Xuesong Liu , Xinyu Li , Shicheng Huo , Liangjing Lu , Chun Zhou , Zhanyu Li
{"title":"镁生物活性玻璃杂化功能化聚醚醚酮具有免疫调节功能,可引导细胞命运和骨再生。","authors":"Xuesong Liu , Xinyu Li , Shicheng Huo , Liangjing Lu , Chun Zhou , Zhanyu Li","doi":"10.1016/j.colsurfb.2023.113523","DOIUrl":null,"url":null,"abstract":"<div><p><span>Polyetheretherketone<span> (PEEK) is being increasingly recognized as a highly promising polymer implant in orthopaedics due to its advantageous biocompatibility, favorable processability, and radiation resistance. Nonetheless, the long-term application of PEEK implants </span></span><em>in vivo</em><span> faces challenges due to unfavorable post-implantation inflammatory and immune reactions, which result in suboptimal osseointegration rates. Hence, biofunctionalizing the surface of PEEK implants emerges as a viable strategy to enhance osseointegration and increase the success rate. In this study, we developed a multifunctional PEEK implant through the </span><em>in-situ</em><span><span><span> incorporation of chitosan-coated bioactive glass </span>nanoparticles (BGNs). This approach can impart immunomodulatory properties and enhance the potential for osseointegration. The resulting biofunctionalized PEEK material exhibited multiple beneficial effects. For instance, it facilitated M2 phenotypic polarization of macrophages, diminished the expression of inflammatory factors, and enhanced the </span>osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) </span><em>in vitro</em>. Moreover, it exhibited an improved capacity for osseointegration when tested <em>in vivo</em><span>. The findings of the experiment highlighted the pivotal and complex role of the biofunctionalized PEEK implant in maintaining typical bone immunity and metabolism. The study proposes that the application of chitosan-BGNs presents a straightforward approach to developing multifunctional implants with the ability to promote biomineralization<span> and immunomodulation, specifically tailored for orthopaedic applications.</span></span></p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"230 ","pages":"Article 113523"},"PeriodicalIF":5.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesium bioactive glass hybrid functionalized polyetheretherketone with immunomodulatory function to guide cell fate and bone regeneration\",\"authors\":\"Xuesong Liu , Xinyu Li , Shicheng Huo , Liangjing Lu , Chun Zhou , Zhanyu Li\",\"doi\":\"10.1016/j.colsurfb.2023.113523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Polyetheretherketone<span> (PEEK) is being increasingly recognized as a highly promising polymer implant in orthopaedics due to its advantageous biocompatibility, favorable processability, and radiation resistance. Nonetheless, the long-term application of PEEK implants </span></span><em>in vivo</em><span> faces challenges due to unfavorable post-implantation inflammatory and immune reactions, which result in suboptimal osseointegration rates. Hence, biofunctionalizing the surface of PEEK implants emerges as a viable strategy to enhance osseointegration and increase the success rate. In this study, we developed a multifunctional PEEK implant through the </span><em>in-situ</em><span><span><span> incorporation of chitosan-coated bioactive glass </span>nanoparticles (BGNs). This approach can impart immunomodulatory properties and enhance the potential for osseointegration. The resulting biofunctionalized PEEK material exhibited multiple beneficial effects. For instance, it facilitated M2 phenotypic polarization of macrophages, diminished the expression of inflammatory factors, and enhanced the </span>osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) </span><em>in vitro</em>. Moreover, it exhibited an improved capacity for osseointegration when tested <em>in vivo</em><span>. The findings of the experiment highlighted the pivotal and complex role of the biofunctionalized PEEK implant in maintaining typical bone immunity and metabolism. The study proposes that the application of chitosan-BGNs presents a straightforward approach to developing multifunctional implants with the ability to promote biomineralization<span> and immunomodulation, specifically tailored for orthopaedic applications.</span></span></p></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"230 \",\"pages\":\"Article 113523\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776523004010\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776523004010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Magnesium bioactive glass hybrid functionalized polyetheretherketone with immunomodulatory function to guide cell fate and bone regeneration
Polyetheretherketone (PEEK) is being increasingly recognized as a highly promising polymer implant in orthopaedics due to its advantageous biocompatibility, favorable processability, and radiation resistance. Nonetheless, the long-term application of PEEK implants in vivo faces challenges due to unfavorable post-implantation inflammatory and immune reactions, which result in suboptimal osseointegration rates. Hence, biofunctionalizing the surface of PEEK implants emerges as a viable strategy to enhance osseointegration and increase the success rate. In this study, we developed a multifunctional PEEK implant through the in-situ incorporation of chitosan-coated bioactive glass nanoparticles (BGNs). This approach can impart immunomodulatory properties and enhance the potential for osseointegration. The resulting biofunctionalized PEEK material exhibited multiple beneficial effects. For instance, it facilitated M2 phenotypic polarization of macrophages, diminished the expression of inflammatory factors, and enhanced the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. Moreover, it exhibited an improved capacity for osseointegration when tested in vivo. The findings of the experiment highlighted the pivotal and complex role of the biofunctionalized PEEK implant in maintaining typical bone immunity and metabolism. The study proposes that the application of chitosan-BGNs presents a straightforward approach to developing multifunctional implants with the ability to promote biomineralization and immunomodulation, specifically tailored for orthopaedic applications.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.