Huang-Ju Tu, Chih-Jou Su, Chao-Shiang Peng, Tony Eight Lin, Wei-Chun HuangFu, Kai-Cheng Hsu, Tsong-Long Hwang, Shiow-Lin Pan
{"title":"尿素A通过抑制DYRK1A活性显示出对阿尔茨海默病的神经保护作用。","authors":"Huang-Ju Tu, Chih-Jou Su, Chao-Shiang Peng, Tony Eight Lin, Wei-Chun HuangFu, Kai-Cheng Hsu, Tsong-Long Hwang, Shiow-Lin Pan","doi":"10.38212/2224-6614.3462","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a devastating neurodegenerative disease with more than 50 million people suffer from it. Unfortunately, none of the currently available drugs is able to improve cognitive impairment in AD patients. Urolithin A (UA) is a metabolite obtained from ellagic acid and ellagitannin through the intestinal flora, and it has antioxidant and anti-inflammatory properties. Previous reports found that UA had neuroprotective effects in an AD animal model, but the detailed mechanism still needs to be elucidated. In this study, we performed kinase-profiling to show that dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is the main target of UA. Studies showed that the level of DYRK1A in AD patients' brains was higher than that of healthy people, and it was closely related to the occurrence and progression of AD. Our results revealed that UA significantly reduced the activity of DYRK1A, which led to de-phosphorylation of tau and further stabilized microtubule polymerization. UA also provided neuroprotective effects by inhibiting the production of inflammatory cytokines caused by Aβ. We further showed that UA significantly improved memory impairment in an AD-like mouse model. In summary, our results indicate that UA is a DYRK1A inhibitor that may provide therapeutic advantages for AD patients.</p>","PeriodicalId":358,"journal":{"name":"Journal of Food and Drug Analysis","volume":"31 2","pages":"358-370"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/51/jfda358-370.PMC10281726.pdf","citationCount":"3","resultStr":"{\"title\":\"Urolithin A exhibits a neuroprotective effect against Alzheimer's disease by inhibiting DYRK1A activity.\",\"authors\":\"Huang-Ju Tu, Chih-Jou Su, Chao-Shiang Peng, Tony Eight Lin, Wei-Chun HuangFu, Kai-Cheng Hsu, Tsong-Long Hwang, Shiow-Lin Pan\",\"doi\":\"10.38212/2224-6614.3462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a devastating neurodegenerative disease with more than 50 million people suffer from it. Unfortunately, none of the currently available drugs is able to improve cognitive impairment in AD patients. Urolithin A (UA) is a metabolite obtained from ellagic acid and ellagitannin through the intestinal flora, and it has antioxidant and anti-inflammatory properties. Previous reports found that UA had neuroprotective effects in an AD animal model, but the detailed mechanism still needs to be elucidated. In this study, we performed kinase-profiling to show that dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is the main target of UA. Studies showed that the level of DYRK1A in AD patients' brains was higher than that of healthy people, and it was closely related to the occurrence and progression of AD. Our results revealed that UA significantly reduced the activity of DYRK1A, which led to de-phosphorylation of tau and further stabilized microtubule polymerization. UA also provided neuroprotective effects by inhibiting the production of inflammatory cytokines caused by Aβ. We further showed that UA significantly improved memory impairment in an AD-like mouse model. In summary, our results indicate that UA is a DYRK1A inhibitor that may provide therapeutic advantages for AD patients.</p>\",\"PeriodicalId\":358,\"journal\":{\"name\":\"Journal of Food and Drug Analysis\",\"volume\":\"31 2\",\"pages\":\"358-370\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/51/jfda358-370.PMC10281726.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food and Drug Analysis\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.38212/2224-6614.3462\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food and Drug Analysis","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.38212/2224-6614.3462","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Urolithin A exhibits a neuroprotective effect against Alzheimer's disease by inhibiting DYRK1A activity.
Alzheimer's disease (AD) is a devastating neurodegenerative disease with more than 50 million people suffer from it. Unfortunately, none of the currently available drugs is able to improve cognitive impairment in AD patients. Urolithin A (UA) is a metabolite obtained from ellagic acid and ellagitannin through the intestinal flora, and it has antioxidant and anti-inflammatory properties. Previous reports found that UA had neuroprotective effects in an AD animal model, but the detailed mechanism still needs to be elucidated. In this study, we performed kinase-profiling to show that dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is the main target of UA. Studies showed that the level of DYRK1A in AD patients' brains was higher than that of healthy people, and it was closely related to the occurrence and progression of AD. Our results revealed that UA significantly reduced the activity of DYRK1A, which led to de-phosphorylation of tau and further stabilized microtubule polymerization. UA also provided neuroprotective effects by inhibiting the production of inflammatory cytokines caused by Aβ. We further showed that UA significantly improved memory impairment in an AD-like mouse model. In summary, our results indicate that UA is a DYRK1A inhibitor that may provide therapeutic advantages for AD patients.
期刊介绍:
The journal aims to provide an international platform for scientists, researchers and academicians to promote, share and discuss new findings, current issues, and developments in the different areas of food and drug analysis.
The scope of the Journal includes analytical methodologies and biological activities in relation to food, drugs, cosmetics and traditional Chinese medicine, as well as related disciplines of topical interest to public health professionals.