从多元功能数据中发现因果关系的功能贝叶斯网络。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2023-08-28 DOI:10.1111/biom.13922
Fangting Zhou, Kejun He, Kunbo Wang, Yanxun Xu, Yang Ni
{"title":"从多元功能数据中发现因果关系的功能贝叶斯网络。","authors":"Fangting Zhou,&nbsp;Kejun He,&nbsp;Kunbo Wang,&nbsp;Yanxun Xu,&nbsp;Yang Ni","doi":"10.1111/biom.13922","DOIUrl":null,"url":null,"abstract":"<p>Multivariate functional data arise in a wide range of applications. One fundamental task is to understand the causal relationships among these functional objects of interest. In this paper, we develop a novel Bayesian network (BN) model for multivariate functional data where conditional independencies and causal structure are encoded by a directed acyclic graph. Specifically, we allow the functional objects to deviate from Gaussian processes, which is the key to unique causal structure identification even when the functions are measured with noises. A fully Bayesian framework is designed to infer the functional BN model with natural uncertainty quantification through posterior summaries. Simulation studies and real data examples demonstrate the practical utility of the proposed model.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"79 4","pages":"3279-3293"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/biom.13922","citationCount":"0","resultStr":"{\"title\":\"Functional Bayesian networks for discovering causality from multivariate functional data\",\"authors\":\"Fangting Zhou,&nbsp;Kejun He,&nbsp;Kunbo Wang,&nbsp;Yanxun Xu,&nbsp;Yang Ni\",\"doi\":\"10.1111/biom.13922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multivariate functional data arise in a wide range of applications. One fundamental task is to understand the causal relationships among these functional objects of interest. In this paper, we develop a novel Bayesian network (BN) model for multivariate functional data where conditional independencies and causal structure are encoded by a directed acyclic graph. Specifically, we allow the functional objects to deviate from Gaussian processes, which is the key to unique causal structure identification even when the functions are measured with noises. A fully Bayesian framework is designed to infer the functional BN model with natural uncertainty quantification through posterior summaries. Simulation studies and real data examples demonstrate the practical utility of the proposed model.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"79 4\",\"pages\":\"3279-3293\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/biom.13922\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/biom.13922\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/biom.13922","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多变量函数数据的应用范围非常广泛。其中一项基本任务是理解这些功能对象之间的因果关系。在本文中,我们为多变量功能数据开发了一个新颖的贝叶斯网络(BN)模型,其中条件独立性和因果结构由有向无环图编码。具体来说,我们允许功能对象偏离高斯过程,这是在功能测量存在噪声的情况下识别独特因果结构的关键。我们设计了一个完全贝叶斯的框架,通过后验总结来推断具有自然不确定性量化的功能 BN 模型。模拟研究和真实数据实例证明了所提模型的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Functional Bayesian networks for discovering causality from multivariate functional data

Functional Bayesian networks for discovering causality from multivariate functional data

Multivariate functional data arise in a wide range of applications. One fundamental task is to understand the causal relationships among these functional objects of interest. In this paper, we develop a novel Bayesian network (BN) model for multivariate functional data where conditional independencies and causal structure are encoded by a directed acyclic graph. Specifically, we allow the functional objects to deviate from Gaussian processes, which is the key to unique causal structure identification even when the functions are measured with noises. A fully Bayesian framework is designed to infer the functional BN model with natural uncertainty quantification through posterior summaries. Simulation studies and real data examples demonstrate the practical utility of the proposed model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信