Ping Zhang, Chaoting Zhou, Qiangan Jing, Yan Gao, Lei Yang, Yanchun Li, Jing Du, Xiangmin Tong, Ying Wang
{"title":"APR3在癌症中的作用:细胞凋亡、自噬、氧化应激和癌症治疗。","authors":"Ping Zhang, Chaoting Zhou, Qiangan Jing, Yan Gao, Lei Yang, Yanchun Li, Jing Du, Xiangmin Tong, Ying Wang","doi":"10.1007/s10495-023-01882-w","DOIUrl":null,"url":null,"abstract":"<div><p><i>APR3</i> (<i>Apoptosis-related protein 3</i>) is a gene that has recently been identified to be associated with apoptosis. The gene is located on human chromosome 2p22.3 and contains both transmembrane and EGF (epidermal growth factor)-like domains. Additionally, it has structural sites, including <i>AP1</i>, <i>SP1</i>, and <i>MEF2D</i>, that indicate <i>NFAT</i> (<i>nuclear factor of activated T cells</i>) and <i>NF-κB</i> (<i>nuclear factor kappa-B</i>) may be transcription factors for this gene. Functionally, APR3 participates in apoptosis due to the induction of mitochondrial damage to release mitochondrial cytochrome C. Concurrently, APR3 affects the cell cycle by altering the expression of Cyclin D1, which, in turn, affects the incidence and growth of malignancies and promotes cell differentiation. Previous reports indicate that APR3 is located in lysosomal membranes, where it contributes to lysosomal activity and participates in autophagy. While further research is required to determine the precise role and molecular mechanisms of APR3, earlier studies have laid the groundwork for APR3 research. There is growing evidence supporting the significance of APR3 in oncology. Therefore, this review aims to examine the current state of knowledge on the role of the newly discovered APR3 in tumorigenesis and to generate fresh insights and suggestions for future research.</p></div>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":"28 11-12","pages":"1520 - 1533"},"PeriodicalIF":6.1000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of APR3 in cancer: apoptosis, autophagy, oxidative stress, and cancer therapy\",\"authors\":\"Ping Zhang, Chaoting Zhou, Qiangan Jing, Yan Gao, Lei Yang, Yanchun Li, Jing Du, Xiangmin Tong, Ying Wang\",\"doi\":\"10.1007/s10495-023-01882-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><i>APR3</i> (<i>Apoptosis-related protein 3</i>) is a gene that has recently been identified to be associated with apoptosis. The gene is located on human chromosome 2p22.3 and contains both transmembrane and EGF (epidermal growth factor)-like domains. Additionally, it has structural sites, including <i>AP1</i>, <i>SP1</i>, and <i>MEF2D</i>, that indicate <i>NFAT</i> (<i>nuclear factor of activated T cells</i>) and <i>NF-κB</i> (<i>nuclear factor kappa-B</i>) may be transcription factors for this gene. Functionally, APR3 participates in apoptosis due to the induction of mitochondrial damage to release mitochondrial cytochrome C. Concurrently, APR3 affects the cell cycle by altering the expression of Cyclin D1, which, in turn, affects the incidence and growth of malignancies and promotes cell differentiation. Previous reports indicate that APR3 is located in lysosomal membranes, where it contributes to lysosomal activity and participates in autophagy. While further research is required to determine the precise role and molecular mechanisms of APR3, earlier studies have laid the groundwork for APR3 research. There is growing evidence supporting the significance of APR3 in oncology. Therefore, this review aims to examine the current state of knowledge on the role of the newly discovered APR3 in tumorigenesis and to generate fresh insights and suggestions for future research.</p></div>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\"28 11-12\",\"pages\":\"1520 - 1533\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10495-023-01882-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10495-023-01882-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Role of APR3 in cancer: apoptosis, autophagy, oxidative stress, and cancer therapy
APR3 (Apoptosis-related protein 3) is a gene that has recently been identified to be associated with apoptosis. The gene is located on human chromosome 2p22.3 and contains both transmembrane and EGF (epidermal growth factor)-like domains. Additionally, it has structural sites, including AP1, SP1, and MEF2D, that indicate NFAT (nuclear factor of activated T cells) and NF-κB (nuclear factor kappa-B) may be transcription factors for this gene. Functionally, APR3 participates in apoptosis due to the induction of mitochondrial damage to release mitochondrial cytochrome C. Concurrently, APR3 affects the cell cycle by altering the expression of Cyclin D1, which, in turn, affects the incidence and growth of malignancies and promotes cell differentiation. Previous reports indicate that APR3 is located in lysosomal membranes, where it contributes to lysosomal activity and participates in autophagy. While further research is required to determine the precise role and molecular mechanisms of APR3, earlier studies have laid the groundwork for APR3 research. There is growing evidence supporting the significance of APR3 in oncology. Therefore, this review aims to examine the current state of knowledge on the role of the newly discovered APR3 in tumorigenesis and to generate fresh insights and suggestions for future research.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.