Marcos Villeda-Hernandez, Benjamin C Baker, Christian Romero, Jonathan M Rossiter, Michael P M Dicker, Charl F J Faul
{"title":"化学驱动振荡软气动驱动。","authors":"Marcos Villeda-Hernandez, Benjamin C Baker, Christian Romero, Jonathan M Rossiter, Michael P M Dicker, Charl F J Faul","doi":"10.1089/soro.2022.0168","DOIUrl":null,"url":null,"abstract":"<p><p>Pneumatic actuators are widely studied in soft robotics as they are facile, low cost, scalable, and robust and exhibit compliance similar to many systems found in nature. The challenge is to harness high energy density chemical and biochemical reactions that can generate sufficient pneumatic pressure to actuate soft systems in a controlled and ecologically compatible manner. This investigation evaluates the potential of chemical reactions as both positive and negative pressure sources for use in soft robotic pneumatic actuators. Considering the pneumatic actuation demands, the chemical mechanisms of the pressure sources, and the safety of the system, several gas evolution/consumption reactions are evaluated and compared. Furthermore, the novel coupling of both gas evolution and gas consumption reactions is discussed and evaluated for the design of oscillating systems, driven by the complementary evolution and consumption of carbon dioxide. Control over the speed of gas generation and consumption is achieved by adjusting the initial ratios of feed materials. Coupling the appropriate reactions with pneumatic soft-matter actuators has delivered autonomous cyclic actuation. The reversibility of these systems is demonstrated in a range of displacement experiments, and practical application is shown through a soft gripper that can move, pick up, and let go of objects. Our approach presents a significant step toward more autonomous, versatile soft robots driven by chemo-pneumatic actuators.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1159-1170"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically Driven Oscillating Soft Pneumatic Actuation.\",\"authors\":\"Marcos Villeda-Hernandez, Benjamin C Baker, Christian Romero, Jonathan M Rossiter, Michael P M Dicker, Charl F J Faul\",\"doi\":\"10.1089/soro.2022.0168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pneumatic actuators are widely studied in soft robotics as they are facile, low cost, scalable, and robust and exhibit compliance similar to many systems found in nature. The challenge is to harness high energy density chemical and biochemical reactions that can generate sufficient pneumatic pressure to actuate soft systems in a controlled and ecologically compatible manner. This investigation evaluates the potential of chemical reactions as both positive and negative pressure sources for use in soft robotic pneumatic actuators. Considering the pneumatic actuation demands, the chemical mechanisms of the pressure sources, and the safety of the system, several gas evolution/consumption reactions are evaluated and compared. Furthermore, the novel coupling of both gas evolution and gas consumption reactions is discussed and evaluated for the design of oscillating systems, driven by the complementary evolution and consumption of carbon dioxide. Control over the speed of gas generation and consumption is achieved by adjusting the initial ratios of feed materials. Coupling the appropriate reactions with pneumatic soft-matter actuators has delivered autonomous cyclic actuation. The reversibility of these systems is demonstrated in a range of displacement experiments, and practical application is shown through a soft gripper that can move, pick up, and let go of objects. Our approach presents a significant step toward more autonomous, versatile soft robots driven by chemo-pneumatic actuators.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\" \",\"pages\":\"1159-1170\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0168\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0168","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Pneumatic actuators are widely studied in soft robotics as they are facile, low cost, scalable, and robust and exhibit compliance similar to many systems found in nature. The challenge is to harness high energy density chemical and biochemical reactions that can generate sufficient pneumatic pressure to actuate soft systems in a controlled and ecologically compatible manner. This investigation evaluates the potential of chemical reactions as both positive and negative pressure sources for use in soft robotic pneumatic actuators. Considering the pneumatic actuation demands, the chemical mechanisms of the pressure sources, and the safety of the system, several gas evolution/consumption reactions are evaluated and compared. Furthermore, the novel coupling of both gas evolution and gas consumption reactions is discussed and evaluated for the design of oscillating systems, driven by the complementary evolution and consumption of carbon dioxide. Control over the speed of gas generation and consumption is achieved by adjusting the initial ratios of feed materials. Coupling the appropriate reactions with pneumatic soft-matter actuators has delivered autonomous cyclic actuation. The reversibility of these systems is demonstrated in a range of displacement experiments, and practical application is shown through a soft gripper that can move, pick up, and let go of objects. Our approach presents a significant step toward more autonomous, versatile soft robots driven by chemo-pneumatic actuators.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.