斑马鱼幼体心脏收缩力的 4D 光片成像和交互式分析。

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL
APL Bioengineering Pub Date : 2023-06-15 eCollection Date: 2023-06-01 DOI:10.1063/5.0153214
Xinyuan Zhang, Milad Almasian, Sohail S Hassan, Rosemary Jotheesh, Vinay A Kadam, Austin R Polk, Alireza Saberigarakani, Aayan Rahat, Jie Yuan, Juhyun Lee, Kelli Carroll, Yichen Ding
{"title":"斑马鱼幼体心脏收缩力的 4D 光片成像和交互式分析。","authors":"Xinyuan Zhang, Milad Almasian, Sohail S Hassan, Rosemary Jotheesh, Vinay A Kadam, Austin R Polk, Alireza Saberigarakani, Aayan Rahat, Jie Yuan, Juhyun Lee, Kelli Carroll, Yichen Ding","doi":"10.1063/5.0153214","DOIUrl":null,"url":null,"abstract":"<p><p>Despite ongoing efforts in cardiovascular research, the acquisition of high-resolution and high-speed images for the purpose of assessing cardiac contraction remains challenging. Light-sheet fluorescence microscopy (LSFM) offers superior spatiotemporal resolution and minimal photodamage, providing an indispensable opportunity for the <i>in vivo</i> study of cardiac micro-structure and contractile function in zebrafish larvae. To track the myocardial architecture and contractility, we have developed an imaging strategy ranging from LSFM system construction, retrospective synchronization, single cell tracking, to user-directed virtual reality (VR) analysis. Our system enables the four-dimensional (4D) investigation of individual cardiomyocytes across the entire atrium and ventricle during multiple cardiac cycles in a zebrafish larva at the cellular resolution. To enhance the throughput of our model reconstruction and assessment, we have developed a parallel computing-assisted algorithm for 4D synchronization, resulting in a nearly tenfold enhancement of reconstruction efficiency. The machine learning-based nuclei segmentation and VR-based interaction further allow us to quantify cellular dynamics in the myocardium from end-systole to end-diastole. Collectively, our strategy facilitates noninvasive cardiac imaging and user-directed data interpretation with improved efficiency and accuracy, holding great promise to characterize functional changes and regional mechanics at the single cell level during cardiac development and regeneration.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"7 2","pages":"026112"},"PeriodicalIF":6.6000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283270/pdf/","citationCount":"0","resultStr":"{\"title\":\"4D Light-sheet imaging and interactive analysis of cardiac contractility in zebrafish larvae.\",\"authors\":\"Xinyuan Zhang, Milad Almasian, Sohail S Hassan, Rosemary Jotheesh, Vinay A Kadam, Austin R Polk, Alireza Saberigarakani, Aayan Rahat, Jie Yuan, Juhyun Lee, Kelli Carroll, Yichen Ding\",\"doi\":\"10.1063/5.0153214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite ongoing efforts in cardiovascular research, the acquisition of high-resolution and high-speed images for the purpose of assessing cardiac contraction remains challenging. Light-sheet fluorescence microscopy (LSFM) offers superior spatiotemporal resolution and minimal photodamage, providing an indispensable opportunity for the <i>in vivo</i> study of cardiac micro-structure and contractile function in zebrafish larvae. To track the myocardial architecture and contractility, we have developed an imaging strategy ranging from LSFM system construction, retrospective synchronization, single cell tracking, to user-directed virtual reality (VR) analysis. Our system enables the four-dimensional (4D) investigation of individual cardiomyocytes across the entire atrium and ventricle during multiple cardiac cycles in a zebrafish larva at the cellular resolution. To enhance the throughput of our model reconstruction and assessment, we have developed a parallel computing-assisted algorithm for 4D synchronization, resulting in a nearly tenfold enhancement of reconstruction efficiency. The machine learning-based nuclei segmentation and VR-based interaction further allow us to quantify cellular dynamics in the myocardium from end-systole to end-diastole. Collectively, our strategy facilitates noninvasive cardiac imaging and user-directed data interpretation with improved efficiency and accuracy, holding great promise to characterize functional changes and regional mechanics at the single cell level during cardiac development and regeneration.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":\"7 2\",\"pages\":\"026112\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283270/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0153214\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0153214","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管心血管研究领域一直在努力,但为评估心脏收缩情况而获取高分辨率和高速图像仍是一项挑战。光片荧光显微镜(LSFM)具有卓越的时空分辨率和最小的光损伤,为斑马鱼幼体心脏微观结构和收缩功能的活体研究提供了不可或缺的机会。为了跟踪心肌结构和收缩力,我们开发了一种成像策略,包括从 LSFM 系统构建、回溯同步、单细胞跟踪到用户指导的虚拟现实(VR)分析。我们的系统可在斑马鱼幼体的多个心脏周期中,以细胞分辨率对整个心房和心室的单个心肌细胞进行四维(4D)研究。为了提高模型重建和评估的吞吐量,我们开发了一种用于四维同步的并行计算辅助算法,使重建效率提高了近十倍。基于机器学习的细胞核分割和基于虚拟现实的交互进一步使我们能够量化心肌从收缩末期到舒张末期的细胞动态。总之,我们的策略有助于无创心脏成像和用户指导的数据解读,提高了效率和准确性,有望在单细胞水平上描述心脏发育和再生过程中的功能变化和区域力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

4D Light-sheet imaging and interactive analysis of cardiac contractility in zebrafish larvae.

4D Light-sheet imaging and interactive analysis of cardiac contractility in zebrafish larvae.

4D Light-sheet imaging and interactive analysis of cardiac contractility in zebrafish larvae.

4D Light-sheet imaging and interactive analysis of cardiac contractility in zebrafish larvae.

Despite ongoing efforts in cardiovascular research, the acquisition of high-resolution and high-speed images for the purpose of assessing cardiac contraction remains challenging. Light-sheet fluorescence microscopy (LSFM) offers superior spatiotemporal resolution and minimal photodamage, providing an indispensable opportunity for the in vivo study of cardiac micro-structure and contractile function in zebrafish larvae. To track the myocardial architecture and contractility, we have developed an imaging strategy ranging from LSFM system construction, retrospective synchronization, single cell tracking, to user-directed virtual reality (VR) analysis. Our system enables the four-dimensional (4D) investigation of individual cardiomyocytes across the entire atrium and ventricle during multiple cardiac cycles in a zebrafish larva at the cellular resolution. To enhance the throughput of our model reconstruction and assessment, we have developed a parallel computing-assisted algorithm for 4D synchronization, resulting in a nearly tenfold enhancement of reconstruction efficiency. The machine learning-based nuclei segmentation and VR-based interaction further allow us to quantify cellular dynamics in the myocardium from end-systole to end-diastole. Collectively, our strategy facilitates noninvasive cardiac imaging and user-directed data interpretation with improved efficiency and accuracy, holding great promise to characterize functional changes and regional mechanics at the single cell level during cardiac development and regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信