基于高效液相色谱四极杆飞行时间质谱分析的脓毒症小鼠血清代谢物谱图的动态变化。

IF 1.1 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Shutong Li, Qi Zeng, Shentang Li, Yarong Liu, Yang Feng, Fang Chen, Lianhong Zou, Xiehong Liu, Yanjuan Liu, Yu Jiang
{"title":"基于高效液相色谱四极杆飞行时间质谱分析的脓毒症小鼠血清代谢物谱图的动态变化。","authors":"Shutong Li,&nbsp;Qi Zeng,&nbsp;Shentang Li,&nbsp;Yarong Liu,&nbsp;Yang Feng,&nbsp;Fang Chen,&nbsp;Lianhong Zou,&nbsp;Xiehong Liu,&nbsp;Yanjuan Liu,&nbsp;Yu Jiang","doi":"10.1177/14690667231179565","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to gain insights into the underlying metabolic transformations that occurred during the whole progression of cecal ligation and puncture (CLP)-induced sepsis, thus providing new targets for its treatment. High-performance liquid chromatography of quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with multivariate statistical techniques was used to detect the s in serum from septic mice. Fifty male mice were divided into two groups, including the sham group (<i>n</i> = 7) and the CLP-induced sepsis group (<i>n</i> = 43). Animals were sacrificed at 1, 3, 5, and 7 days post-CLP and then serum were collected for metabolomic analysis. Multivariate regression analysis was carried out through MetaboAnalyst 5.0, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), to identify the s and screen out the related differential metabolites. Besides, the KEGG pathway analysis was used to analyze the related metabolic pathways in which the identified metabolites were involved. Based on the fold change (FC > 2.0 or <0.5), variable important in projection (VIP > 1.2), and <i>P</i> value (<i>P</i> < 0.05), we found 26, 17, 21, and 17 metabolites in septic mice at 1, 3, 5, and 7 days post-CLP, respectively, compared with that of the sham group. The PCA and PLS-DA pattern recognition showed a cluster-type distribution between the sham group and the CLP group. Dysregulated amino acid metabolism, as well as disturbed nucleotide metabolism, is observed. Several important metabolic pathways were identified between the sham group and the CLP group. Among them, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis showed striking at day 1 post-CLP. At day 3, phenylalanine, tyrosine, and tryptophan biosynthesis changed significantly. However, as the disease process, only pyrimidine metabolism showed the most significant alternation, compared to the sham group. Several differential metabolites were identified in the CLP group compared with that of the sham group and they were presented with dynamic alternation at different time points post-CLP, indicating metabolic disturbance occurred throughout the whole sepsis progression.</p>","PeriodicalId":12007,"journal":{"name":"European Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic changes of serum metabolite profiling in septic mice based on high performance liquid chromatography of quadrupole time of flight mass spectrometry analysis.\",\"authors\":\"Shutong Li,&nbsp;Qi Zeng,&nbsp;Shentang Li,&nbsp;Yarong Liu,&nbsp;Yang Feng,&nbsp;Fang Chen,&nbsp;Lianhong Zou,&nbsp;Xiehong Liu,&nbsp;Yanjuan Liu,&nbsp;Yu Jiang\",\"doi\":\"10.1177/14690667231179565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study is to gain insights into the underlying metabolic transformations that occurred during the whole progression of cecal ligation and puncture (CLP)-induced sepsis, thus providing new targets for its treatment. High-performance liquid chromatography of quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with multivariate statistical techniques was used to detect the s in serum from septic mice. Fifty male mice were divided into two groups, including the sham group (<i>n</i> = 7) and the CLP-induced sepsis group (<i>n</i> = 43). Animals were sacrificed at 1, 3, 5, and 7 days post-CLP and then serum were collected for metabolomic analysis. Multivariate regression analysis was carried out through MetaboAnalyst 5.0, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), to identify the s and screen out the related differential metabolites. Besides, the KEGG pathway analysis was used to analyze the related metabolic pathways in which the identified metabolites were involved. Based on the fold change (FC > 2.0 or <0.5), variable important in projection (VIP > 1.2), and <i>P</i> value (<i>P</i> < 0.05), we found 26, 17, 21, and 17 metabolites in septic mice at 1, 3, 5, and 7 days post-CLP, respectively, compared with that of the sham group. The PCA and PLS-DA pattern recognition showed a cluster-type distribution between the sham group and the CLP group. Dysregulated amino acid metabolism, as well as disturbed nucleotide metabolism, is observed. Several important metabolic pathways were identified between the sham group and the CLP group. Among them, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis showed striking at day 1 post-CLP. At day 3, phenylalanine, tyrosine, and tryptophan biosynthesis changed significantly. However, as the disease process, only pyrimidine metabolism showed the most significant alternation, compared to the sham group. Several differential metabolites were identified in the CLP group compared with that of the sham group and they were presented with dynamic alternation at different time points post-CLP, indicating metabolic disturbance occurred throughout the whole sepsis progression.</p>\",\"PeriodicalId\":12007,\"journal\":{\"name\":\"European Journal of Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/14690667231179565\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667231179565","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是深入了解盲肠结扎和穿刺(CLP)引起的脓毒症的整个过程中发生的潜在代谢转化,从而为其治疗提供新的靶点。采用高效液相色谱-四极杆飞行时间质谱(HPLC-Q-TOF-MS/MS)结合多元统计技术对脓毒症小鼠血清中的s进行检测。将50只雄性小鼠分为两组,假手术组(n = 7)和clp致脓毒症组(n = 43)。在clp后1、3、5和7天处死动物,收集血清进行代谢组学分析。通过MetaboAnalyst 5.0进行多元回归分析,包括主成分分析(PCA)和偏最小二乘判别分析(PLS-DA),识别s并筛选出相关差异代谢物。此外,通过KEGG通路分析,对鉴定出的代谢物所涉及的相关代谢通路进行分析。基于褶皱变化(FC > 2.0或1.2),以及P值(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic changes of serum metabolite profiling in septic mice based on high performance liquid chromatography of quadrupole time of flight mass spectrometry analysis.

The objective of this study is to gain insights into the underlying metabolic transformations that occurred during the whole progression of cecal ligation and puncture (CLP)-induced sepsis, thus providing new targets for its treatment. High-performance liquid chromatography of quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with multivariate statistical techniques was used to detect the s in serum from septic mice. Fifty male mice were divided into two groups, including the sham group (n = 7) and the CLP-induced sepsis group (n = 43). Animals were sacrificed at 1, 3, 5, and 7 days post-CLP and then serum were collected for metabolomic analysis. Multivariate regression analysis was carried out through MetaboAnalyst 5.0, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), to identify the s and screen out the related differential metabolites. Besides, the KEGG pathway analysis was used to analyze the related metabolic pathways in which the identified metabolites were involved. Based on the fold change (FC > 2.0 or <0.5), variable important in projection (VIP > 1.2), and P value (P < 0.05), we found 26, 17, 21, and 17 metabolites in septic mice at 1, 3, 5, and 7 days post-CLP, respectively, compared with that of the sham group. The PCA and PLS-DA pattern recognition showed a cluster-type distribution between the sham group and the CLP group. Dysregulated amino acid metabolism, as well as disturbed nucleotide metabolism, is observed. Several important metabolic pathways were identified between the sham group and the CLP group. Among them, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis showed striking at day 1 post-CLP. At day 3, phenylalanine, tyrosine, and tryptophan biosynthesis changed significantly. However, as the disease process, only pyrimidine metabolism showed the most significant alternation, compared to the sham group. Several differential metabolites were identified in the CLP group compared with that of the sham group and they were presented with dynamic alternation at different time points post-CLP, indicating metabolic disturbance occurred throughout the whole sepsis progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
16
审稿时长
>12 weeks
期刊介绍: JMS - European Journal of Mass Spectrometry, is a peer-reviewed journal, devoted to the publication of innovative research in mass spectrometry. Articles in the journal come from proteomics, metabolomics, petroleomics and other areas developing under the umbrella of the “omic revolution”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信