Sheila Mondragón Contreras, Juliana Benace Fernandes, Manuela da Silva Spinola, Maíra Terra Garcia, Juliana Campos Junqueira, Eduardo Bresciani, Taciana Marco Ferraz Caneppele
{"title":"生物活性材料预防变形链球菌引起的牙釉质和牙本质龋齿的疗效。","authors":"Sheila Mondragón Contreras, Juliana Benace Fernandes, Manuela da Silva Spinola, Maíra Terra Garcia, Juliana Campos Junqueira, Eduardo Bresciani, Taciana Marco Ferraz Caneppele","doi":"10.1111/eos.12948","DOIUrl":null,"url":null,"abstract":"<p>The study investigated the ability of bioactive materials used to restore enamel and dentine specimens to prevent caries. Enamel (<i>n</i> = 50) and dentine (<i>n</i> = 50) specimens were obtained from bovine incisors, prepared, and randomly allocated to one of five groups according to the restorative treatment: alkasite without adhesive system; alkasite with adhesive system; high viscosity glass ionomer cement; resin composite; no restoration; negative control group. Specimens were restored, exposed to a thermal cycling aging protocol, sterilized, and exposed to a cariogenic challenge induced by <i>Streptococcus mutans</i> and then submitted to surface and subsurface microhardness tests and polarized light microscopy to verify the caries lesion development in enamel or dentine surrounding the restorative materials. Data were analyzed using one-way ANOVA. In enamel and dentine, glass ionomer cement, alkasite without and with adhesive system presented a lower percentage surface microhardness loss than resin composite and negative control. Enamel subsurface microhardness presented no statistically significant differences between glass ionomer cement, alkasite without and with adhesive system. Glass ionomer cement also did not present statistically significant differences from resin composite and the negative control. In dentine, glass ionomer cement showed the highest subsurface microhardness values. In conclusion, bioactive restorative materials provide greater protection to enamel and dentine against surface caries development than resin composite.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of bioactive materials in preventing Streptococcus mutans-induced caries on enamel and dentine\",\"authors\":\"Sheila Mondragón Contreras, Juliana Benace Fernandes, Manuela da Silva Spinola, Maíra Terra Garcia, Juliana Campos Junqueira, Eduardo Bresciani, Taciana Marco Ferraz Caneppele\",\"doi\":\"10.1111/eos.12948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study investigated the ability of bioactive materials used to restore enamel and dentine specimens to prevent caries. Enamel (<i>n</i> = 50) and dentine (<i>n</i> = 50) specimens were obtained from bovine incisors, prepared, and randomly allocated to one of five groups according to the restorative treatment: alkasite without adhesive system; alkasite with adhesive system; high viscosity glass ionomer cement; resin composite; no restoration; negative control group. Specimens were restored, exposed to a thermal cycling aging protocol, sterilized, and exposed to a cariogenic challenge induced by <i>Streptococcus mutans</i> and then submitted to surface and subsurface microhardness tests and polarized light microscopy to verify the caries lesion development in enamel or dentine surrounding the restorative materials. Data were analyzed using one-way ANOVA. In enamel and dentine, glass ionomer cement, alkasite without and with adhesive system presented a lower percentage surface microhardness loss than resin composite and negative control. Enamel subsurface microhardness presented no statistically significant differences between glass ionomer cement, alkasite without and with adhesive system. Glass ionomer cement also did not present statistically significant differences from resin composite and the negative control. In dentine, glass ionomer cement showed the highest subsurface microhardness values. In conclusion, bioactive restorative materials provide greater protection to enamel and dentine against surface caries development than resin composite.</p>\",\"PeriodicalId\":11983,\"journal\":{\"name\":\"European Journal of Oral Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Oral Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eos.12948\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Oral Sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eos.12948","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Efficacy of bioactive materials in preventing Streptococcus mutans-induced caries on enamel and dentine
The study investigated the ability of bioactive materials used to restore enamel and dentine specimens to prevent caries. Enamel (n = 50) and dentine (n = 50) specimens were obtained from bovine incisors, prepared, and randomly allocated to one of five groups according to the restorative treatment: alkasite without adhesive system; alkasite with adhesive system; high viscosity glass ionomer cement; resin composite; no restoration; negative control group. Specimens were restored, exposed to a thermal cycling aging protocol, sterilized, and exposed to a cariogenic challenge induced by Streptococcus mutans and then submitted to surface and subsurface microhardness tests and polarized light microscopy to verify the caries lesion development in enamel or dentine surrounding the restorative materials. Data were analyzed using one-way ANOVA. In enamel and dentine, glass ionomer cement, alkasite without and with adhesive system presented a lower percentage surface microhardness loss than resin composite and negative control. Enamel subsurface microhardness presented no statistically significant differences between glass ionomer cement, alkasite without and with adhesive system. Glass ionomer cement also did not present statistically significant differences from resin composite and the negative control. In dentine, glass ionomer cement showed the highest subsurface microhardness values. In conclusion, bioactive restorative materials provide greater protection to enamel and dentine against surface caries development than resin composite.
期刊介绍:
The European Journal of Oral Sciences is an international journal which publishes original research papers within clinical dentistry, on all basic science aspects of structure, chemistry, developmental biology, physiology and pathology of relevant tissues, as well as on microbiology, biomaterials and the behavioural sciences as they relate to dentistry. In general, analytical studies are preferred to descriptive ones. Reviews, Short Communications and Letters to the Editor will also be considered for publication.
The journal is published bimonthly.