{"title":"次最大努力足球侧脚踢的动态调整。","authors":"Hiroyuki Nunome, Koichiro Inoue, Kohei Watanabe, Hiroshi Akima","doi":"10.1080/14763141.2023.2227156","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to illustrate kicking leg dynamics during submaximal effort soccer side-foot kicks. Side-foot kicks with three effort levels (50, 75 and 100% effort levels based on maximal effort) of eight male university soccer players were captured (500 Hz) while initial ball velocities were monitored simultaneously. Systematic regulation in joint kinetics (angular impulses) was clearly demonstrated for hip flexion and knee extension moments thereby supporting the interpretation that the final foot velocity is controlled in a context of a planar, sequential segmental system. Out of the thigh-shank plane motion (hip external rotation moment) was also found to be systematically adjusted. Kinematic contributions of knee extension angular velocity to the final foot velocity increased significantly in the maximal effort while that of hip external rotation reduced significantly, coinciding with a more straightforward approach-run. The adjustable range of the foot-ball interaction was found to be rather smaller in side-foot kicks. However, significantly smaller ball/foot velocity ratios in the two submaximal conditions suggested ankle joint fixation was manipulated towards ball impact. Players and coaches ought to recognise that the intensities of side-foot kicks were regulated by the motions within and without the thigh-shank plane alongside several kinematic changes.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"65-79"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic adjustment of submaximal effort soccer side-foot kicks.\",\"authors\":\"Hiroyuki Nunome, Koichiro Inoue, Kohei Watanabe, Hiroshi Akima\",\"doi\":\"10.1080/14763141.2023.2227156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We aimed to illustrate kicking leg dynamics during submaximal effort soccer side-foot kicks. Side-foot kicks with three effort levels (50, 75 and 100% effort levels based on maximal effort) of eight male university soccer players were captured (500 Hz) while initial ball velocities were monitored simultaneously. Systematic regulation in joint kinetics (angular impulses) was clearly demonstrated for hip flexion and knee extension moments thereby supporting the interpretation that the final foot velocity is controlled in a context of a planar, sequential segmental system. Out of the thigh-shank plane motion (hip external rotation moment) was also found to be systematically adjusted. Kinematic contributions of knee extension angular velocity to the final foot velocity increased significantly in the maximal effort while that of hip external rotation reduced significantly, coinciding with a more straightforward approach-run. The adjustable range of the foot-ball interaction was found to be rather smaller in side-foot kicks. However, significantly smaller ball/foot velocity ratios in the two submaximal conditions suggested ankle joint fixation was manipulated towards ball impact. Players and coaches ought to recognise that the intensities of side-foot kicks were regulated by the motions within and without the thigh-shank plane alongside several kinematic changes.</p>\",\"PeriodicalId\":49482,\"journal\":{\"name\":\"Sports Biomechanics\",\"volume\":\" \",\"pages\":\"65-79\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14763141.2023.2227156\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2023.2227156","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Dynamic adjustment of submaximal effort soccer side-foot kicks.
We aimed to illustrate kicking leg dynamics during submaximal effort soccer side-foot kicks. Side-foot kicks with three effort levels (50, 75 and 100% effort levels based on maximal effort) of eight male university soccer players were captured (500 Hz) while initial ball velocities were monitored simultaneously. Systematic regulation in joint kinetics (angular impulses) was clearly demonstrated for hip flexion and knee extension moments thereby supporting the interpretation that the final foot velocity is controlled in a context of a planar, sequential segmental system. Out of the thigh-shank plane motion (hip external rotation moment) was also found to be systematically adjusted. Kinematic contributions of knee extension angular velocity to the final foot velocity increased significantly in the maximal effort while that of hip external rotation reduced significantly, coinciding with a more straightforward approach-run. The adjustable range of the foot-ball interaction was found to be rather smaller in side-foot kicks. However, significantly smaller ball/foot velocity ratios in the two submaximal conditions suggested ankle joint fixation was manipulated towards ball impact. Players and coaches ought to recognise that the intensities of side-foot kicks were regulated by the motions within and without the thigh-shank plane alongside several kinematic changes.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.