不同角度切割时经验对身体神经肌肉控制的影响

IF 1.1 4区 心理学 Q4 NEUROSCIENCES
Journal of Motor Behavior Pub Date : 2023-01-01 Epub Date: 2023-06-01 DOI:10.1080/00222895.2023.2218821
Zhengye Pan, Lushuai Liu, Xingman Li, Yunchao Ma
{"title":"不同角度切割时经验对身体神经肌肉控制的影响","authors":"Zhengye Pan, Lushuai Liu, Xingman Li, Yunchao Ma","doi":"10.1080/00222895.2023.2218821","DOIUrl":null,"url":null,"abstract":"<p><p>Cutting is an offensive technique commonly used in football and basketball to pass the opponent's defence by changing direction quickly in running. This paper aims to investigate the effect of experience and angle on the neuromuscular control strategies of the trunk and lower limbs during cutting. Non-negative matrix factorisation and K-means were used to extract muscle synergies (muscles that are activated in parallel) of 12 subjects with cut experience and 9 subjects without experience based on the sEMG signal collected from cutting at three cut angles (45°, 90°, and 135°), which was also mapped into the spinal motor output. Uncontrolled manifold analysis was used to establish the relationship between muscle synergies and COP. This study found that experienced subjects tended to use the lower limb muscles rather than the postural muscles as stabiliser muscles compared to novices. Experienced subjects can recruit an additional set of muscle synergy to cope with large-angle cuts. In addition, experienced subjects can activate the second muscle synergy, involving the hip and ankle stabilisation muscles, in advance to improve postural stability when cutting in large-angle. Synergy index of experienced subjects dropped rapidly before the quick stop and was relatively high during the change of direction. These results suggest that experience can modify the postural stabilisation mechanisms during cutting, and prompt the lower limb muscle synergy to produce anticipatory adjustment to improve postural stability in the anterior-posterior and internal-external directions.</p>","PeriodicalId":50125,"journal":{"name":"Journal of Motor Behavior","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Experience on Neuromuscular Control of the Body When Cutting at Different Angles.\",\"authors\":\"Zhengye Pan, Lushuai Liu, Xingman Li, Yunchao Ma\",\"doi\":\"10.1080/00222895.2023.2218821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cutting is an offensive technique commonly used in football and basketball to pass the opponent's defence by changing direction quickly in running. This paper aims to investigate the effect of experience and angle on the neuromuscular control strategies of the trunk and lower limbs during cutting. Non-negative matrix factorisation and K-means were used to extract muscle synergies (muscles that are activated in parallel) of 12 subjects with cut experience and 9 subjects without experience based on the sEMG signal collected from cutting at three cut angles (45°, 90°, and 135°), which was also mapped into the spinal motor output. Uncontrolled manifold analysis was used to establish the relationship between muscle synergies and COP. This study found that experienced subjects tended to use the lower limb muscles rather than the postural muscles as stabiliser muscles compared to novices. Experienced subjects can recruit an additional set of muscle synergy to cope with large-angle cuts. In addition, experienced subjects can activate the second muscle synergy, involving the hip and ankle stabilisation muscles, in advance to improve postural stability when cutting in large-angle. Synergy index of experienced subjects dropped rapidly before the quick stop and was relatively high during the change of direction. These results suggest that experience can modify the postural stabilisation mechanisms during cutting, and prompt the lower limb muscle synergy to produce anticipatory adjustment to improve postural stability in the anterior-posterior and internal-external directions.</p>\",\"PeriodicalId\":50125,\"journal\":{\"name\":\"Journal of Motor Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Motor Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00222895.2023.2218821\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Motor Behavior","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00222895.2023.2218821","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

切入是足球和篮球比赛中常用的一种进攻技术,通过在奔跑中快速改变方向来超越对手的防守。本文旨在研究切入时经验和角度对躯干和下肢神经肌肉控制策略的影响。根据在三个切入角度(45°、90° 和 135°)切入时收集到的 sEMG 信号,采用非负矩阵因式分解和 K-means,提取了 12 名有切入经验的受试者和 9 名无切入经验的受试者的肌肉协同作用(并行激活的肌肉),并将其映射到脊柱运动输出中。研究采用了不可控流形分析法来确定肌肉协同作用与 COP 之间的关系。这项研究发现,与新手相比,有经验的受试者倾向于使用下肢肌肉而不是姿势肌肉作为稳定肌肉。经验丰富的受试者可以使用额外的肌肉协同作用来应对大角度的切割。此外,经验丰富的受试者在进行大角度剪切时,可提前启动第二组肌肉协同作用,包括臀部和脚踝的稳定肌肉,以提高姿势稳定性。经验丰富的受试者的协同指数在急停前迅速下降,而在变向时则相对较高。这些结果表明,经验可以改变切割时的姿势稳定机制,并促使下肢肌肉协同产生预期调整,从而改善前后和内外方向的姿势稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Influence of Experience on Neuromuscular Control of the Body When Cutting at Different Angles.

Cutting is an offensive technique commonly used in football and basketball to pass the opponent's defence by changing direction quickly in running. This paper aims to investigate the effect of experience and angle on the neuromuscular control strategies of the trunk and lower limbs during cutting. Non-negative matrix factorisation and K-means were used to extract muscle synergies (muscles that are activated in parallel) of 12 subjects with cut experience and 9 subjects without experience based on the sEMG signal collected from cutting at three cut angles (45°, 90°, and 135°), which was also mapped into the spinal motor output. Uncontrolled manifold analysis was used to establish the relationship between muscle synergies and COP. This study found that experienced subjects tended to use the lower limb muscles rather than the postural muscles as stabiliser muscles compared to novices. Experienced subjects can recruit an additional set of muscle synergy to cope with large-angle cuts. In addition, experienced subjects can activate the second muscle synergy, involving the hip and ankle stabilisation muscles, in advance to improve postural stability when cutting in large-angle. Synergy index of experienced subjects dropped rapidly before the quick stop and was relatively high during the change of direction. These results suggest that experience can modify the postural stabilisation mechanisms during cutting, and prompt the lower limb muscle synergy to produce anticipatory adjustment to improve postural stability in the anterior-posterior and internal-external directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Motor Behavior
Journal of Motor Behavior 医学-神经科学
CiteScore
3.10
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: The Journal of Motor Behavior, a multidisciplinary journal of movement neuroscience, publishes articles that contribute to a basic understanding of motor control. Articles from different disciplinary perspectives and levels of analysis are encouraged, including neurophysiological, biomechanical, electrophysiological, psychological, mathematical and physical, and clinical approaches. Applied studies are acceptable only to the extent that they provide a significant contribution to a basic issue in motor control. Of special interest to the journal are those articles that attempt to bridge insights from different disciplinary perspectives to infer processes underlying motor control. Those approaches may embrace postural, locomotive, and manipulative aspects of motor functions, as well as coordination of speech articulators and eye movements. Articles dealing with analytical techniques and mathematical modeling are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信