Dobromir Dotov, Valérie Cochen de Cock, Valérie Driss, Benoît Bardy, Simone Dalla Bella
{"title":"帕金森病患者步态、姿势和言语中的协调僵化。","authors":"Dobromir Dotov, Valérie Cochen de Cock, Valérie Driss, Benoît Bardy, Simone Dalla Bella","doi":"10.1080/00222895.2023.2217100","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is associated with reduced coordination abilities. These can result either in random or rigid patterns of movement. The latter, described here as coordination rigidity (CR), have been studied less often. We explored whether CR was present in gait, quiet stance, and speech-tasks involving coordination among multiple joints and muscles. Kinematic and voice recordings were used to compute measures describing the dynamics of systems with multiple degrees of freedom and nonlinear interactions. After clinical evaluation, patients with moderate stage PD were compared against matched healthy participants. In the PD group, gait dynamics was associated with decreased dynamic divergence-lower instability-in the vertical axis. Postural fluctuations were associated with increased regularity in the anterior-posterior axis, and voice dynamics with increased predictability, all consistent with CR. The clinical relevance of CR was confirmed by showing that some of those features contribute to disease classification with supervised machine learning (82/81/85% accuracy/sensitivity/specificity).</p>","PeriodicalId":50125,"journal":{"name":"Journal of Motor Behavior","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordination Rigidity in the Gait, Posture, and Speech of Persons with Parkinson's Disease.\",\"authors\":\"Dobromir Dotov, Valérie Cochen de Cock, Valérie Driss, Benoît Bardy, Simone Dalla Bella\",\"doi\":\"10.1080/00222895.2023.2217100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is associated with reduced coordination abilities. These can result either in random or rigid patterns of movement. The latter, described here as coordination rigidity (CR), have been studied less often. We explored whether CR was present in gait, quiet stance, and speech-tasks involving coordination among multiple joints and muscles. Kinematic and voice recordings were used to compute measures describing the dynamics of systems with multiple degrees of freedom and nonlinear interactions. After clinical evaluation, patients with moderate stage PD were compared against matched healthy participants. In the PD group, gait dynamics was associated with decreased dynamic divergence-lower instability-in the vertical axis. Postural fluctuations were associated with increased regularity in the anterior-posterior axis, and voice dynamics with increased predictability, all consistent with CR. The clinical relevance of CR was confirmed by showing that some of those features contribute to disease classification with supervised machine learning (82/81/85% accuracy/sensitivity/specificity).</p>\",\"PeriodicalId\":50125,\"journal\":{\"name\":\"Journal of Motor Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Motor Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00222895.2023.2217100\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Motor Behavior","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00222895.2023.2217100","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Coordination Rigidity in the Gait, Posture, and Speech of Persons with Parkinson's Disease.
Parkinson's disease (PD) is associated with reduced coordination abilities. These can result either in random or rigid patterns of movement. The latter, described here as coordination rigidity (CR), have been studied less often. We explored whether CR was present in gait, quiet stance, and speech-tasks involving coordination among multiple joints and muscles. Kinematic and voice recordings were used to compute measures describing the dynamics of systems with multiple degrees of freedom and nonlinear interactions. After clinical evaluation, patients with moderate stage PD were compared against matched healthy participants. In the PD group, gait dynamics was associated with decreased dynamic divergence-lower instability-in the vertical axis. Postural fluctuations were associated with increased regularity in the anterior-posterior axis, and voice dynamics with increased predictability, all consistent with CR. The clinical relevance of CR was confirmed by showing that some of those features contribute to disease classification with supervised machine learning (82/81/85% accuracy/sensitivity/specificity).
期刊介绍:
The Journal of Motor Behavior, a multidisciplinary journal of movement neuroscience, publishes articles that contribute to a basic understanding of motor control. Articles from different disciplinary perspectives and levels of analysis are encouraged, including neurophysiological, biomechanical, electrophysiological, psychological, mathematical and physical, and clinical approaches. Applied studies are acceptable only to the extent that they provide a significant contribution to a basic issue in motor control. Of special interest to the journal are those articles that attempt to bridge insights from different disciplinary perspectives to infer processes underlying motor control. Those approaches may embrace postural, locomotive, and manipulative aspects of motor functions, as well as coordination of speech articulators and eye movements. Articles dealing with analytical techniques and mathematical modeling are welcome.