{"title":"以盐酸咪唑为促进剂,从邻氨基苯甲酸和 DMF 衍生物中单锅合成 2,3-二取代-4(3H)-喹唑啉酮。","authors":"Yin Wang, Xiuyu Zhang, Suzhen Li, Mengyi Guo, Wanqian Ma, Jianyong Yuan","doi":"10.2174/1570179421666230815151540","DOIUrl":null,"url":null,"abstract":"<p><p>As a novel and environmentally friendly Brönsted acid, imidazole hydrochloride was used to promote the synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic acid and DMF derivatives. The essence of this reaction is a multicomponent reaction, which constructs multiple chemical bonds between different components through the transamidation of imidazole hydrochloride. This protocol showed a wide range of functional group tolerance, and a series of quinazolinones were synthesized in low to moderate yields without metal catalysts, oxidants or other additives.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-pot Synthesis of 2,3-disubstituted-4(3<i>H</i>)-quinazolinone from o-aminobenzoic Acid and DMF Derivatives using Imidazole Hydrochloride as a Promoter.\",\"authors\":\"Yin Wang, Xiuyu Zhang, Suzhen Li, Mengyi Guo, Wanqian Ma, Jianyong Yuan\",\"doi\":\"10.2174/1570179421666230815151540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a novel and environmentally friendly Brönsted acid, imidazole hydrochloride was used to promote the synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic acid and DMF derivatives. The essence of this reaction is a multicomponent reaction, which constructs multiple chemical bonds between different components through the transamidation of imidazole hydrochloride. This protocol showed a wide range of functional group tolerance, and a series of quinazolinones were synthesized in low to moderate yields without metal catalysts, oxidants or other additives.</p>\",\"PeriodicalId\":11101,\"journal\":{\"name\":\"Current organic synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current organic synthesis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/1570179421666230815151540\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/1570179421666230815151540","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
One-pot Synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic Acid and DMF Derivatives using Imidazole Hydrochloride as a Promoter.
As a novel and environmentally friendly Brönsted acid, imidazole hydrochloride was used to promote the synthesis of 2,3-disubstituted-4(3H)-quinazolinone from o-aminobenzoic acid and DMF derivatives. The essence of this reaction is a multicomponent reaction, which constructs multiple chemical bonds between different components through the transamidation of imidazole hydrochloride. This protocol showed a wide range of functional group tolerance, and a series of quinazolinones were synthesized in low to moderate yields without metal catalysts, oxidants or other additives.
期刊介绍:
Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.