柔性骨架对过二亚氨基聚合物氧化还原特性的影响

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-09-18 Epub Date: 2023-08-15 DOI:10.1021/acsami.3c06065
Jaehwan Kim, Yogita Shirke, Phillip J Milner
{"title":"柔性骨架对过二亚氨基聚合物氧化还原特性的影响","authors":"Jaehwan Kim, Yogita Shirke, Phillip J Milner","doi":"10.1021/acsami.3c06065","DOIUrl":null,"url":null,"abstract":"<p><p>Organic electrode materials are appealing candidates for a wide range of applications, including heterogeneous electrocatalysis and electrochemical energy storage. However, a narrow understanding of the structure-property relationships in these materials hinders the full realization of their potential. Herein, we investigate a family of insoluble perylenediimide (PDI) polymers to interrogate how backbone flexibility affects their thermodynamic and kinetic redox properties. We verify that the polymers generally access the highest percentage of redox-active groups with K<sup>+</sup> ions (vs Na<sup>+</sup> and Li<sup>+</sup>) due to its small solvation shell/energy and favorable soft-soft interactions with reduced PDI species. Through cyclic voltammetry, we show that increasing the polymer flexibility does not minimize barriers to ion-insertion processes but rather increases the level of diffusion-limited processes. Further, we propose that the condensation of imides to iminoimides can truncate the imide polymer chain growth for certain diamine monomers, leading to greater polymer solubilization and reduced cycling stability. Together, our results provide insight into how polymer flexibility, ion-electrode interactions, and polymerization side reactions dictate the redox properties of PDI polymers, paving the way for the development of next-generation organic electrode materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867274/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flexible Backbone Effects on the Redox Properties of Perylenediimide-Based Polymers.\",\"authors\":\"Jaehwan Kim, Yogita Shirke, Phillip J Milner\",\"doi\":\"10.1021/acsami.3c06065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organic electrode materials are appealing candidates for a wide range of applications, including heterogeneous electrocatalysis and electrochemical energy storage. However, a narrow understanding of the structure-property relationships in these materials hinders the full realization of their potential. Herein, we investigate a family of insoluble perylenediimide (PDI) polymers to interrogate how backbone flexibility affects their thermodynamic and kinetic redox properties. We verify that the polymers generally access the highest percentage of redox-active groups with K<sup>+</sup> ions (vs Na<sup>+</sup> and Li<sup>+</sup>) due to its small solvation shell/energy and favorable soft-soft interactions with reduced PDI species. Through cyclic voltammetry, we show that increasing the polymer flexibility does not minimize barriers to ion-insertion processes but rather increases the level of diffusion-limited processes. Further, we propose that the condensation of imides to iminoimides can truncate the imide polymer chain growth for certain diamine monomers, leading to greater polymer solubilization and reduced cycling stability. Together, our results provide insight into how polymer flexibility, ion-electrode interactions, and polymerization side reactions dictate the redox properties of PDI polymers, paving the way for the development of next-generation organic electrode materials.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867274/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.3c06065\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.3c06065","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机电极材料在包括异相电催化和电化学储能在内的广泛应用中具有吸引力。然而,对这些材料结构-性能关系的狭隘理解阻碍了它们潜力的充分发挥。在此,我们研究了一系列不溶性过二亚胺(PDI)聚合物,以探讨骨架柔性如何影响其热力学和动力学氧化还原特性。我们证实,由于 K+ 离子(相对于 Na+ 和 Li+)的溶解壳/能量较小,且与还原型 PDI 物种之间存在有利的软-软相互作用,因此聚合物通常与 K+ 离子(相对于 Na+ 和 Li+)的氧化还原活性基团接触的比例最高。通过循环伏安法,我们发现增加聚合物的柔韧性并不会减少离子插入过程的障碍,反而会增加扩散受限过程的水平。此外,我们还提出,对于某些二胺单体来说,亚胺缩合成亚氨基亚胺会截断亚胺聚合物链的生长,从而导致聚合物溶解度增加,循环稳定性降低。总之,我们的研究结果让我们深入了解了聚合物的柔韧性、离子与电极的相互作用以及聚合副反应是如何决定 PDI 聚合物的氧化还原特性的,从而为开发下一代有机电极材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible Backbone Effects on the Redox Properties of Perylenediimide-Based Polymers.

Organic electrode materials are appealing candidates for a wide range of applications, including heterogeneous electrocatalysis and electrochemical energy storage. However, a narrow understanding of the structure-property relationships in these materials hinders the full realization of their potential. Herein, we investigate a family of insoluble perylenediimide (PDI) polymers to interrogate how backbone flexibility affects their thermodynamic and kinetic redox properties. We verify that the polymers generally access the highest percentage of redox-active groups with K+ ions (vs Na+ and Li+) due to its small solvation shell/energy and favorable soft-soft interactions with reduced PDI species. Through cyclic voltammetry, we show that increasing the polymer flexibility does not minimize barriers to ion-insertion processes but rather increases the level of diffusion-limited processes. Further, we propose that the condensation of imides to iminoimides can truncate the imide polymer chain growth for certain diamine monomers, leading to greater polymer solubilization and reduced cycling stability. Together, our results provide insight into how polymer flexibility, ion-electrode interactions, and polymerization side reactions dictate the redox properties of PDI polymers, paving the way for the development of next-generation organic electrode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信