{"title":"次氯酸钙对炭疽芽孢杆菌表面去污效果的评价","authors":"Noémie Verguet , Lou Mondange , Flora Nolent , Anne Depeille , Annabelle Garnier , Fabienne Neulat-Ripoll , Olivier Gorgé , Jean-Nicolas Tournier","doi":"10.1016/j.resmic.2023.104053","DOIUrl":null,"url":null,"abstract":"<div><p><span>Contamination with microorganisms occurs in laboratories but is also of high concern in the context of bioterrorism. Decontamination is a cornerstone that promotes good laboratory practices and occupational health and safety. Among the most resistant structures formed by microorganisms are spores, produced notably by </span><em>Clostridium</em> and <em>Bacillus</em> species. Here, we compared six products containing four different molecules (hydrogen peroxide, peracetic acid, sodium and calcium hypochlorite) on <em>B</em><em>. anthracis</em> Sterne spores. We first selected the most efficient product based on its activity against spore suspensions using French and European standards. Four products showed sporicidal activity, of which only two did so in a time frame consistent with good laboratory practices. Then, we tested one of these two products under laboratory conditions on fully virulent <em>B. anthracis</em><span> spores, during common use and after contamination through a spill of a highly concentrated spore suspension. We, thus, robustly validated a decontaminant based on calcium hypochlorite not only on its ability to kill spores but also on its effectiveness under laboratory conditions. At the end, we were able to assure a complete disinfection in 1 min after spillover and in 2 min for common use.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of calcium hypochlorite for Bacillus anthracis spore surface's decontamination\",\"authors\":\"Noémie Verguet , Lou Mondange , Flora Nolent , Anne Depeille , Annabelle Garnier , Fabienne Neulat-Ripoll , Olivier Gorgé , Jean-Nicolas Tournier\",\"doi\":\"10.1016/j.resmic.2023.104053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Contamination with microorganisms occurs in laboratories but is also of high concern in the context of bioterrorism. Decontamination is a cornerstone that promotes good laboratory practices and occupational health and safety. Among the most resistant structures formed by microorganisms are spores, produced notably by </span><em>Clostridium</em> and <em>Bacillus</em> species. Here, we compared six products containing four different molecules (hydrogen peroxide, peracetic acid, sodium and calcium hypochlorite) on <em>B</em><em>. anthracis</em> Sterne spores. We first selected the most efficient product based on its activity against spore suspensions using French and European standards. Four products showed sporicidal activity, of which only two did so in a time frame consistent with good laboratory practices. Then, we tested one of these two products under laboratory conditions on fully virulent <em>B. anthracis</em><span> spores, during common use and after contamination through a spill of a highly concentrated spore suspension. We, thus, robustly validated a decontaminant based on calcium hypochlorite not only on its ability to kill spores but also on its effectiveness under laboratory conditions. At the end, we were able to assure a complete disinfection in 1 min after spillover and in 2 min for common use.</span></p></div>\",\"PeriodicalId\":21098,\"journal\":{\"name\":\"Research in microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923250823000281\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823000281","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Assessment of calcium hypochlorite for Bacillus anthracis spore surface's decontamination
Contamination with microorganisms occurs in laboratories but is also of high concern in the context of bioterrorism. Decontamination is a cornerstone that promotes good laboratory practices and occupational health and safety. Among the most resistant structures formed by microorganisms are spores, produced notably by Clostridium and Bacillus species. Here, we compared six products containing four different molecules (hydrogen peroxide, peracetic acid, sodium and calcium hypochlorite) on B. anthracis Sterne spores. We first selected the most efficient product based on its activity against spore suspensions using French and European standards. Four products showed sporicidal activity, of which only two did so in a time frame consistent with good laboratory practices. Then, we tested one of these two products under laboratory conditions on fully virulent B. anthracis spores, during common use and after contamination through a spill of a highly concentrated spore suspension. We, thus, robustly validated a decontaminant based on calcium hypochlorite not only on its ability to kill spores but also on its effectiveness under laboratory conditions. At the end, we were able to assure a complete disinfection in 1 min after spillover and in 2 min for common use.
期刊介绍:
Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.