SMART 二进制:用于二元结果测量的 SMART 研究的新样本量规划资源。

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Multivariate Behavioral Research Pub Date : 2024-01-01 Epub Date: 2023-07-17 DOI:10.1080/00273171.2023.2229079
John J Dziak, Daniel Almirall, Walter Dempsey, Catherine Stanger, Inbal Nahum-Shani
{"title":"SMART 二进制:用于二元结果测量的 SMART 研究的新样本量规划资源。","authors":"John J Dziak, Daniel Almirall, Walter Dempsey, Catherine Stanger, Inbal Nahum-Shani","doi":"10.1080/00273171.2023.2229079","DOIUrl":null,"url":null,"abstract":"<p><p>Sequential Multiple-Assignment Randomized Trials (SMARTs) play an increasingly important role in psychological and behavioral health research. This experimental approach enables researchers to answer scientific questions about how to sequence and match interventions to the unique, changing needs of individuals. A variety of sample size planning resources for SMART studies have been developed, enabling researchers to plan SMARTs for addressing different types of scientific questions. However, relatively limited attention has been given to planning SMARTs with binary (dichotomous) outcomes, which often require higher sample sizes relative to continuous outcomes. Existing resources for estimating sample size requirements for SMARTs with binary outcomes do not consider the potential to improve power by including a baseline measurement and/or multiple repeated outcome measurements. The current paper addresses this issue by providing sample size planning simulation procedures and approximate formulas for two-wave repeated measures binary outcomes (i.e., two measurement times for the outcome variable, before and after intervention delivery). The simulation results agree well with the formulas. We also discuss how to use simulations to calculate power for studies with more than two outcome measurement occasions. Results show that having at least one repeated measurement of the outcome can substantially improve power under certain conditions.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-16"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792389/pdf/","citationCount":"0","resultStr":"{\"title\":\"SMART Binary: New Sample Size Planning Resources for SMART Studies with Binary Outcome Measurements.\",\"authors\":\"John J Dziak, Daniel Almirall, Walter Dempsey, Catherine Stanger, Inbal Nahum-Shani\",\"doi\":\"10.1080/00273171.2023.2229079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sequential Multiple-Assignment Randomized Trials (SMARTs) play an increasingly important role in psychological and behavioral health research. This experimental approach enables researchers to answer scientific questions about how to sequence and match interventions to the unique, changing needs of individuals. A variety of sample size planning resources for SMART studies have been developed, enabling researchers to plan SMARTs for addressing different types of scientific questions. However, relatively limited attention has been given to planning SMARTs with binary (dichotomous) outcomes, which often require higher sample sizes relative to continuous outcomes. Existing resources for estimating sample size requirements for SMARTs with binary outcomes do not consider the potential to improve power by including a baseline measurement and/or multiple repeated outcome measurements. The current paper addresses this issue by providing sample size planning simulation procedures and approximate formulas for two-wave repeated measures binary outcomes (i.e., two measurement times for the outcome variable, before and after intervention delivery). The simulation results agree well with the formulas. We also discuss how to use simulations to calculate power for studies with more than two outcome measurement occasions. Results show that having at least one repeated measurement of the outcome can substantially improve power under certain conditions.</p>\",\"PeriodicalId\":53155,\"journal\":{\"name\":\"Multivariate Behavioral Research\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multivariate Behavioral Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/00273171.2023.2229079\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2229079","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

连续多次随机试验(SMARTs)在心理和行为健康研究中发挥着越来越重要的作用。这种实验方法使研究人员能够回答有关如何根据个人独特、不断变化的需求来安排干预顺序和匹配干预措施的科学问题。目前已开发出多种用于 SMART 研究的样本大小规划资源,使研究人员能够规划 SMART 以解决不同类型的科学问题。然而,人们对二元(二分)结果的 SMART 研究规划的关注相对有限,因为相对于连续结果而言,二元结果往往需要更高的样本量。用于估算二元结果 SMARTs 所需样本量的现有资源并未考虑通过基线测量和/或多次重复结果测量来提高研究力量的潜力。本文针对这一问题,提供了样本量规划模拟程序和两波重复测量二元结果的近似公式(即对结果变量进行两次测量,分别在干预实施之前和之后)。模拟结果与公式非常吻合。我们还讨论了如何使用模拟来计算具有两个以上结果测量场合的研究的功率。结果表明,在某些条件下,对结果进行至少一次重复测量可以大大提高研究的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMART Binary: New Sample Size Planning Resources for SMART Studies with Binary Outcome Measurements.

Sequential Multiple-Assignment Randomized Trials (SMARTs) play an increasingly important role in psychological and behavioral health research. This experimental approach enables researchers to answer scientific questions about how to sequence and match interventions to the unique, changing needs of individuals. A variety of sample size planning resources for SMART studies have been developed, enabling researchers to plan SMARTs for addressing different types of scientific questions. However, relatively limited attention has been given to planning SMARTs with binary (dichotomous) outcomes, which often require higher sample sizes relative to continuous outcomes. Existing resources for estimating sample size requirements for SMARTs with binary outcomes do not consider the potential to improve power by including a baseline measurement and/or multiple repeated outcome measurements. The current paper addresses this issue by providing sample size planning simulation procedures and approximate formulas for two-wave repeated measures binary outcomes (i.e., two measurement times for the outcome variable, before and after intervention delivery). The simulation results agree well with the formulas. We also discuss how to use simulations to calculate power for studies with more than two outcome measurement occasions. Results show that having at least one repeated measurement of the outcome can substantially improve power under certain conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信