ARTC1 介导的 VAPB ADP-ribosylation 调节钙稳态。

IF 5.3 2区 生物学 Q2 CELL BIOLOGY
Xueyao Ma, Mengyuan Li, Yi Liu, Xuefang Zhang, Xiaoyun Yang, Yun Wang, Yipeng Li, Jiayue Wang, Xiuhua Liu, Zhenzhen Yan, Xiaochun Yu, Chen Wu
{"title":"ARTC1 介导的 VAPB ADP-ribosylation 调节钙稳态。","authors":"Xueyao Ma, Mengyuan Li, Yi Liu, Xuefang Zhang, Xiaoyun Yang, Yun Wang, Yipeng Li, Jiayue Wang, Xiuhua Liu, Zhenzhen Yan, Xiaochun Yu, Chen Wu","doi":"10.1093/jmcb/mjad043","DOIUrl":null,"url":null,"abstract":"<p><p>Mono-ADP-ribosylation (MARylation) is a post-translational modification that regulates a variety of biological processes, including DNA damage repair, cell proliferation, metabolism, and stress and immune responses. In mammals, MARylation is mainly catalyzed by ADP-ribosyltransferases (ARTs), which consist of two groups: ART cholera toxin-like (ARTCs) and ART diphtheria toxin-like (ARTDs, also known as PARPs). The human ARTC (hARTC) family is composed of four members: two active mono-ADP-ARTs (hARTC1 and hARTC5) and two enzymatically inactive enzymes (hARTC3 and hARTC4). In this study, we systematically examined the homology, expression, and localization pattern of the hARTC family, with a particular focus on hARTC1. Our results showed that hARTC3 interacted with hARTC1 and promoted the enzymatic activity of hARTC1 by stabilizing hARTC1. We also identified vesicle-associated membrane protein-associated protein B (VAPB) as a new target of hARTC1 and pinpointed Arg50 of VAPB as the ADP-ribosylation site. Furthermore, we demonstrated that knockdown of hARTC1 impaired intracellular calcium homeostasis, highlighting the functional importance of hARTC1-mediated VAPB Arg50 ADP-ribosylation in regulating calcium homeostasis. In summary, our study identified a new target of hARTC1 in the endoplasmic reticulum and suggested that ARTC1 plays a role in regulating calcium signaling.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928986/pdf/","citationCount":"0","resultStr":"{\"title\":\"ARTC1-mediated VAPB ADP-ribosylation regulates calcium homeostasis.\",\"authors\":\"Xueyao Ma, Mengyuan Li, Yi Liu, Xuefang Zhang, Xiaoyun Yang, Yun Wang, Yipeng Li, Jiayue Wang, Xiuhua Liu, Zhenzhen Yan, Xiaochun Yu, Chen Wu\",\"doi\":\"10.1093/jmcb/mjad043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mono-ADP-ribosylation (MARylation) is a post-translational modification that regulates a variety of biological processes, including DNA damage repair, cell proliferation, metabolism, and stress and immune responses. In mammals, MARylation is mainly catalyzed by ADP-ribosyltransferases (ARTs), which consist of two groups: ART cholera toxin-like (ARTCs) and ART diphtheria toxin-like (ARTDs, also known as PARPs). The human ARTC (hARTC) family is composed of four members: two active mono-ADP-ARTs (hARTC1 and hARTC5) and two enzymatically inactive enzymes (hARTC3 and hARTC4). In this study, we systematically examined the homology, expression, and localization pattern of the hARTC family, with a particular focus on hARTC1. Our results showed that hARTC3 interacted with hARTC1 and promoted the enzymatic activity of hARTC1 by stabilizing hARTC1. We also identified vesicle-associated membrane protein-associated protein B (VAPB) as a new target of hARTC1 and pinpointed Arg50 of VAPB as the ADP-ribosylation site. Furthermore, we demonstrated that knockdown of hARTC1 impaired intracellular calcium homeostasis, highlighting the functional importance of hARTC1-mediated VAPB Arg50 ADP-ribosylation in regulating calcium homeostasis. In summary, our study identified a new target of hARTC1 in the endoplasmic reticulum and suggested that ARTC1 plays a role in regulating calcium signaling.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928986/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjad043\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjad043","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单ADP-核糖基化(MARylation)是一种翻译后修饰,可调节多种生物过程,包括DNA损伤修复、细胞增殖、新陈代谢以及应激和免疫反应。在哺乳动物中,MARylation 主要由 ADP 核糖转移酶(ARTs)催化,ARTs 包括两类:类霍乱毒素 ART(ARTCs)和类白喉毒素 ART(ARTDs,又称 PARPs)。人类 ARTC(hARTC)家族由四个成员组成:两个活性单 ADP-ART(hARTC1 和 hARTC5)和两个无酶活性的酶(hARTC3 和 hARTC4)。在这项研究中,我们系统地研究了 hARTC 家族的同源性、表达和定位模式,尤其是 hARTC1。结果表明,hARTC3 与 hARTC1 相互作用,并通过稳定 hARTC1 来促进 hARTC1 的酶活性。我们还发现囊泡相关膜蛋白相关蛋白 B(VAPB)是 hARTC1 的一个新靶点,并确定 VAPB 的 Arg50 为 ADP 核糖基化位点。此外,我们还证明了敲除 hARTC1 会损害细胞内的钙稳态,突出了 hARTC1 介导的 VAPB Arg50 ADP 核糖基化在调节钙稳态中的功能重要性。总之,我们的研究发现了 hARTC1 在内质网中的一个新靶点,并提示 ARTC1 在调节钙信号转导中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARTC1-mediated VAPB ADP-ribosylation regulates calcium homeostasis.

Mono-ADP-ribosylation (MARylation) is a post-translational modification that regulates a variety of biological processes, including DNA damage repair, cell proliferation, metabolism, and stress and immune responses. In mammals, MARylation is mainly catalyzed by ADP-ribosyltransferases (ARTs), which consist of two groups: ART cholera toxin-like (ARTCs) and ART diphtheria toxin-like (ARTDs, also known as PARPs). The human ARTC (hARTC) family is composed of four members: two active mono-ADP-ARTs (hARTC1 and hARTC5) and two enzymatically inactive enzymes (hARTC3 and hARTC4). In this study, we systematically examined the homology, expression, and localization pattern of the hARTC family, with a particular focus on hARTC1. Our results showed that hARTC3 interacted with hARTC1 and promoted the enzymatic activity of hARTC1 by stabilizing hARTC1. We also identified vesicle-associated membrane protein-associated protein B (VAPB) as a new target of hARTC1 and pinpointed Arg50 of VAPB as the ADP-ribosylation site. Furthermore, we demonstrated that knockdown of hARTC1 impaired intracellular calcium homeostasis, highlighting the functional importance of hARTC1-mediated VAPB Arg50 ADP-ribosylation in regulating calcium homeostasis. In summary, our study identified a new target of hARTC1 in the endoplasmic reticulum and suggested that ARTC1 plays a role in regulating calcium signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信