花粉限制下自交率增加对种群的拯救:可塑性与进化。

IF 2.4 2区 环境科学与生态学 Q2 ECOLOGY
American Naturalist Pub Date : 2023-09-01 DOI:10.1086/725425
Kuangyi Xu
{"title":"花粉限制下自交率增加对种群的拯救:可塑性与进化。","authors":"Kuangyi Xu","doi":"10.1086/725425","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractIncreased rates of self-fertilization offer reproductive assurance when plant populations experience pollen limitation, but self-fertilization may reduce fitness by exposing deleterious mutations. If an environmental change responsible for pollen limitation also induces plastic mating system shifts toward self-pollination, the reproductive assurance benefit and inbreeding depression cost of increased self-fertilization occur immediately, while the benefit and cost happen more gradually when increased self-fertilization occur through evolution. I built eco-evolutionary models to explore the demographic and genetic conditions in which higher self-fertilization by plasticity and/or evolution rescues populations, following deficits due to a sudden onset of pollen limitation. Rescue is most likely under an intermediate level of selfing rate increase, either through plasticity or evolution, and this critical level of selfing rate increase is higher under stronger pollen limitation. Generally, rescue is more likely through plasticity than through evolution. Under weak pollen limitation, rescue by enhanced self-fertilization may mainly occur through purging of deleterious mutations rather than reproductive assurance. The selfing rate increase conferring the highest rescue probability is lower when the initial population size is smaller. This article shows the importance of plasticity during plant population rescue and offers insights for future studies of the evolution of mating system plasticity.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"202 3","pages":"337-350"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Population Rescue through an Increase in the Selfing Rate under Pollen Limitation: Plasticity versus Evolution.\",\"authors\":\"Kuangyi Xu\",\"doi\":\"10.1086/725425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractIncreased rates of self-fertilization offer reproductive assurance when plant populations experience pollen limitation, but self-fertilization may reduce fitness by exposing deleterious mutations. If an environmental change responsible for pollen limitation also induces plastic mating system shifts toward self-pollination, the reproductive assurance benefit and inbreeding depression cost of increased self-fertilization occur immediately, while the benefit and cost happen more gradually when increased self-fertilization occur through evolution. I built eco-evolutionary models to explore the demographic and genetic conditions in which higher self-fertilization by plasticity and/or evolution rescues populations, following deficits due to a sudden onset of pollen limitation. Rescue is most likely under an intermediate level of selfing rate increase, either through plasticity or evolution, and this critical level of selfing rate increase is higher under stronger pollen limitation. Generally, rescue is more likely through plasticity than through evolution. Under weak pollen limitation, rescue by enhanced self-fertilization may mainly occur through purging of deleterious mutations rather than reproductive assurance. The selfing rate increase conferring the highest rescue probability is lower when the initial population size is smaller. This article shows the importance of plasticity during plant population rescue and offers insights for future studies of the evolution of mating system plasticity.</p>\",\"PeriodicalId\":50800,\"journal\":{\"name\":\"American Naturalist\",\"volume\":\"202 3\",\"pages\":\"337-350\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Naturalist\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1086/725425\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/725425","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

【摘要】在花粉有限的情况下,自花受精率的提高为植物种群的繁殖提供了保证,但自花受精可能会暴露有害突变,从而降低适应性。如果导致花粉限制的环境变化也导致塑料交配系统向自花授粉转变,则自花受精增加的生殖保证效益和近交抑制成本立即发生,而自花受精增加则是通过进化逐渐发生的。我建立了生态进化模型来探索人口统计学和遗传条件,在这些条件下,可塑性和/或进化带来的更高的自交受精拯救了由于花粉限制突然发作而导致的种群缺陷。在自交率增加的中等水平下(无论是通过可塑性还是通过进化),自交率增加的临界水平在花粉限制越强的情况下越高。一般来说,拯救更有可能通过可塑性而不是进化。在弱花粉限制下,增强自花受精的拯救可能主要通过清除有害突变而不是生殖保证来实现。当初始种群规模较小时,赋予最高救援概率的自交率增长较低。本文揭示了可塑性在植物种群拯救中的重要性,并为今后交配系统可塑性进化的研究提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Population Rescue through an Increase in the Selfing Rate under Pollen Limitation: Plasticity versus Evolution.

AbstractIncreased rates of self-fertilization offer reproductive assurance when plant populations experience pollen limitation, but self-fertilization may reduce fitness by exposing deleterious mutations. If an environmental change responsible for pollen limitation also induces plastic mating system shifts toward self-pollination, the reproductive assurance benefit and inbreeding depression cost of increased self-fertilization occur immediately, while the benefit and cost happen more gradually when increased self-fertilization occur through evolution. I built eco-evolutionary models to explore the demographic and genetic conditions in which higher self-fertilization by plasticity and/or evolution rescues populations, following deficits due to a sudden onset of pollen limitation. Rescue is most likely under an intermediate level of selfing rate increase, either through plasticity or evolution, and this critical level of selfing rate increase is higher under stronger pollen limitation. Generally, rescue is more likely through plasticity than through evolution. Under weak pollen limitation, rescue by enhanced self-fertilization may mainly occur through purging of deleterious mutations rather than reproductive assurance. The selfing rate increase conferring the highest rescue probability is lower when the initial population size is smaller. This article shows the importance of plasticity during plant population rescue and offers insights for future studies of the evolution of mating system plasticity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Naturalist
American Naturalist 环境科学-进化生物学
CiteScore
5.40
自引率
3.40%
发文量
194
审稿时长
3 months
期刊介绍: Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信