微生物DMSP合成中的分子发现。

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Ornella Carrión, Xiao-Yu Zhu, Beth T Williams, Jinyan Wang, Xiao-Hua Zhang, Jonathan D Todd
{"title":"微生物DMSP合成中的分子发现。","authors":"Ornella Carrión,&nbsp;Xiao-Yu Zhu,&nbsp;Beth T Williams,&nbsp;Jinyan Wang,&nbsp;Xiao-Hua Zhang,&nbsp;Jonathan D Todd","doi":"10.1016/bs.ampbs.2023.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur compounds because many marine algae, bacteria, corals and some plants produce it to high mM intracellular concentrations. In these organisms, DMSP acts an anti-stress molecule with purported roles to protect against salinity, temperature, oxidative stress and hydrostatic pressure, amongst many other reported functions. However, DMSP is best known for being a major precursor of the climate-active gases and signalling molecules dimethylsulfide (DMS), methanethiol (MeSH) and, potentially, methane, through microbial DMSP catabolism. DMSP catabolism has been extensively studied and the microbes, pathways and enzymes involved have largely been elucidated through the application of molecular research over the last 17 years. In contrast, the molecular biology of DMSP synthesis is a much newer field, with the first DMSP synthesis enzymes only being identified in the last 5 years. In this review, we discuss how the elucidation of key DMSP synthesis enzymes has greatly expanded our knowledge of the diversity of DMSP-producing organisms, the pathways used, and what environmental factors regulate production, as well as to inform on the physiological roles of DMSP. Importantly, the identification of key DMSP synthesis enzymes in the major groups of DMSP producers has allowed scientists to study the distribution and predict the importance of different DMSP-producing organisms to global DMSP production in diverse marine and sediment environments. Finally, we highlight key challenges for future molecular research into DMSP synthesis that need addressing to better understand the cycling of this important marine organosulfur compound, and its magnitude in the environment.</p>","PeriodicalId":50953,"journal":{"name":"Advances in Microbial Physiology","volume":"83 ","pages":"59-116"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular discoveries in microbial DMSP synthesis.\",\"authors\":\"Ornella Carrión,&nbsp;Xiao-Yu Zhu,&nbsp;Beth T Williams,&nbsp;Jinyan Wang,&nbsp;Xiao-Hua Zhang,&nbsp;Jonathan D Todd\",\"doi\":\"10.1016/bs.ampbs.2023.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur compounds because many marine algae, bacteria, corals and some plants produce it to high mM intracellular concentrations. In these organisms, DMSP acts an anti-stress molecule with purported roles to protect against salinity, temperature, oxidative stress and hydrostatic pressure, amongst many other reported functions. However, DMSP is best known for being a major precursor of the climate-active gases and signalling molecules dimethylsulfide (DMS), methanethiol (MeSH) and, potentially, methane, through microbial DMSP catabolism. DMSP catabolism has been extensively studied and the microbes, pathways and enzymes involved have largely been elucidated through the application of molecular research over the last 17 years. In contrast, the molecular biology of DMSP synthesis is a much newer field, with the first DMSP synthesis enzymes only being identified in the last 5 years. In this review, we discuss how the elucidation of key DMSP synthesis enzymes has greatly expanded our knowledge of the diversity of DMSP-producing organisms, the pathways used, and what environmental factors regulate production, as well as to inform on the physiological roles of DMSP. Importantly, the identification of key DMSP synthesis enzymes in the major groups of DMSP producers has allowed scientists to study the distribution and predict the importance of different DMSP-producing organisms to global DMSP production in diverse marine and sediment environments. Finally, we highlight key challenges for future molecular research into DMSP synthesis that need addressing to better understand the cycling of this important marine organosulfur compound, and its magnitude in the environment.</p>\",\"PeriodicalId\":50953,\"journal\":{\"name\":\"Advances in Microbial Physiology\",\"volume\":\"83 \",\"pages\":\"59-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Microbial Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ampbs.2023.03.001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2023.03.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

二甲基磺丙酸酯(DMSP)是地球上最丰富的有机硫化合物之一,因为许多海洋藻类,细菌,珊瑚和一些植物在细胞内产生高浓度的mM。在这些生物中,DMSP是一种抗应激分子,据称它具有抵抗盐度、温度、氧化应激和静水压力的作用,以及许多其他报道的功能。然而,DMSP最为人所知的是,它是气候活性气体和信号分子二甲硫醚(DMS)、甲硫醇(MeSH)的主要前体,并可能通过微生物DMSP分解代谢产生甲烷。在过去的17年里,人们对DMSP的分解代谢进行了广泛的研究,其中涉及的微生物、途径和酶在很大程度上通过分子研究的应用得到了阐明。相比之下,DMSP合成的分子生物学是一个较新的领域,第一个DMSP合成酶是在最近5年才被发现的。在这篇综述中,我们讨论了DMSP关键合成酶的阐明如何极大地扩展了我们对DMSP产生生物多样性的认识,使用的途径,以及什么环境因素调节生产,以及DMSP的生理作用。重要的是,在DMSP生产者的主要群体中鉴定关键的DMSP合成酶使科学家能够研究分布并预测不同DMSP生产生物在不同海洋和沉积物环境中对全球DMSP生产的重要性。最后,我们强调了DMSP合成未来分子研究的关键挑战,这些挑战需要解决,以更好地了解这种重要的海洋有机硫化合物的循环及其在环境中的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular discoveries in microbial DMSP synthesis.

Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur compounds because many marine algae, bacteria, corals and some plants produce it to high mM intracellular concentrations. In these organisms, DMSP acts an anti-stress molecule with purported roles to protect against salinity, temperature, oxidative stress and hydrostatic pressure, amongst many other reported functions. However, DMSP is best known for being a major precursor of the climate-active gases and signalling molecules dimethylsulfide (DMS), methanethiol (MeSH) and, potentially, methane, through microbial DMSP catabolism. DMSP catabolism has been extensively studied and the microbes, pathways and enzymes involved have largely been elucidated through the application of molecular research over the last 17 years. In contrast, the molecular biology of DMSP synthesis is a much newer field, with the first DMSP synthesis enzymes only being identified in the last 5 years. In this review, we discuss how the elucidation of key DMSP synthesis enzymes has greatly expanded our knowledge of the diversity of DMSP-producing organisms, the pathways used, and what environmental factors regulate production, as well as to inform on the physiological roles of DMSP. Importantly, the identification of key DMSP synthesis enzymes in the major groups of DMSP producers has allowed scientists to study the distribution and predict the importance of different DMSP-producing organisms to global DMSP production in diverse marine and sediment environments. Finally, we highlight key challenges for future molecular research into DMSP synthesis that need addressing to better understand the cycling of this important marine organosulfur compound, and its magnitude in the environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Microbial Physiology
Advances in Microbial Physiology 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
16
期刊介绍: Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信