Suzhen Li , Yong-Jun Jiang , Zhongjun Ma , Nan Wang
{"title":"从南海沉积物中分离到的一种新的环苯胺生成菌链霉菌HNA39的全基因组序列","authors":"Suzhen Li , Yong-Jun Jiang , Zhongjun Ma , Nan Wang","doi":"10.1016/j.margen.2023.101033","DOIUrl":null,"url":null,"abstract":"<div><p><em>Streptomyces</em> sp. HNA39 is a promising candidate for the production of antineoplastic metabolites screened from a collection of 448 actinomycetes derived from coastal sediments. The complete genome sequence of HNA39 comprises a 7,351,753-bp linear chromosome with a GC content of 71.94%. Whole genome analysis reveals the presence of 29 putative biosynthetic gene clusters (BGCs) encoding secondary metabolites. Among them, a type I PKS BGC shows an 82% similarity with the cyclizidine (CLD) BGC identified from <em>Streptomyces</em> NCIB 11649. LC-MS profiles further supported the production of new CLD congeners. Bafilomycins were also found produced in abundance, corresponding to another type I PKS BGC highly homologous to that of bafilomycin B1 from <em>S. lohii</em>. CLDs are indolizidine alkaloids consisting a fused five- and six-membered ring system with an intriguing cyclopropane terminal linked by a <em>trans</em>-dienic chain. The cyclization mechanism of the cylopropyl ring, one of its pharmacophores, is still unknown. Genome sequencing of the new CLD producer and subsequent comparative analysis of their gene clusters would further our understanding of the chemistry behind cyclopropane formation.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"70 ","pages":"Article 101033"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complete genome sequence of Streptomyces sp. HNA39, a new cyclizidine producer isolated from a South China Sea sediment\",\"authors\":\"Suzhen Li , Yong-Jun Jiang , Zhongjun Ma , Nan Wang\",\"doi\":\"10.1016/j.margen.2023.101033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Streptomyces</em> sp. HNA39 is a promising candidate for the production of antineoplastic metabolites screened from a collection of 448 actinomycetes derived from coastal sediments. The complete genome sequence of HNA39 comprises a 7,351,753-bp linear chromosome with a GC content of 71.94%. Whole genome analysis reveals the presence of 29 putative biosynthetic gene clusters (BGCs) encoding secondary metabolites. Among them, a type I PKS BGC shows an 82% similarity with the cyclizidine (CLD) BGC identified from <em>Streptomyces</em> NCIB 11649. LC-MS profiles further supported the production of new CLD congeners. Bafilomycins were also found produced in abundance, corresponding to another type I PKS BGC highly homologous to that of bafilomycin B1 from <em>S. lohii</em>. CLDs are indolizidine alkaloids consisting a fused five- and six-membered ring system with an intriguing cyclopropane terminal linked by a <em>trans</em>-dienic chain. The cyclization mechanism of the cylopropyl ring, one of its pharmacophores, is still unknown. Genome sequencing of the new CLD producer and subsequent comparative analysis of their gene clusters would further our understanding of the chemistry behind cyclopropane formation.</p></div>\",\"PeriodicalId\":18321,\"journal\":{\"name\":\"Marine genomics\",\"volume\":\"70 \",\"pages\":\"Article 101033\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778723000259\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778723000259","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Complete genome sequence of Streptomyces sp. HNA39, a new cyclizidine producer isolated from a South China Sea sediment
Streptomyces sp. HNA39 is a promising candidate for the production of antineoplastic metabolites screened from a collection of 448 actinomycetes derived from coastal sediments. The complete genome sequence of HNA39 comprises a 7,351,753-bp linear chromosome with a GC content of 71.94%. Whole genome analysis reveals the presence of 29 putative biosynthetic gene clusters (BGCs) encoding secondary metabolites. Among them, a type I PKS BGC shows an 82% similarity with the cyclizidine (CLD) BGC identified from Streptomyces NCIB 11649. LC-MS profiles further supported the production of new CLD congeners. Bafilomycins were also found produced in abundance, corresponding to another type I PKS BGC highly homologous to that of bafilomycin B1 from S. lohii. CLDs are indolizidine alkaloids consisting a fused five- and six-membered ring system with an intriguing cyclopropane terminal linked by a trans-dienic chain. The cyclization mechanism of the cylopropyl ring, one of its pharmacophores, is still unknown. Genome sequencing of the new CLD producer and subsequent comparative analysis of their gene clusters would further our understanding of the chemistry behind cyclopropane formation.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.