Joseph W Jackson, James S Foster, Emily B Martin, Sallie Macy, Craig Wooliver, Manasi Balachandran, Tina Richey, R Eric Heidel, Angela D Williams, Stephen J Kennel, Jonathan S Wall
{"title":"胶原蛋白在体内和体外都能抑制淀粉样蛋白的吞噬,并可能起到“不要吃我”的作用。","authors":"Joseph W Jackson, James S Foster, Emily B Martin, Sallie Macy, Craig Wooliver, Manasi Balachandran, Tina Richey, R Eric Heidel, Angela D Williams, Stephen J Kennel, Jonathan S Wall","doi":"10.1080/13506129.2022.2155133","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Systemic amyloidosis refers to a group of protein misfolding disorders characterized by the extracellular deposition of amyloid fibrils in organs and tissues. For reasons heretofore unknown, amyloid deposits are not recognized by the immune system, and progressive deposition leads to organ dysfunction.</p><p><strong>Methods: </strong><i>In vitro</i> and <i>in vivo</i> phagocytosis assays were performed to elucidate the impact of collagen and other amyloid associated proteins (eg serum amyloid p component and apolipoprotein E) had on amyloid phagocytosis. Immunohistochemical and histopathological staining regimens were employed to analyze collagen-amyloid interactions and immune responses.</p><p><strong>Results: </strong>Histological analysis of amyloid-laden tissue indicated that collagen is intimately associated with amyloid deposits. We report that collagen inhibits phagocytosis of amyloid fibrils by macrophages. Treatment of 15 patient-derived amyloid extracts with collagenase significantly enhanced amyloid phagocytosis. Preclinical mouse studies indicated that collagenase treatment of amyloid extracts significantly enhanced clearance as compared to controls, coincident with increased immune cell infiltration of the subcutaneous amyloid lesion.</p><p><strong>Conclusions: </strong>These data suggest that amyloid-associated collagen serves as a 'don't eat me' signal, thereby hindering clearance of amyloid. Targeted degradation of amyloid-associated collagen could result in innate immune cell recognition and clearance of pathologic amyloid deposits.</p>","PeriodicalId":50964,"journal":{"name":"Amyloid-Journal of Protein Folding Disorders","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Collagen inhibits phagocytosis of amyloid <i>in vitro</i> and <i>in vivo</i> and may act as a 'don't eat me' signal.\",\"authors\":\"Joseph W Jackson, James S Foster, Emily B Martin, Sallie Macy, Craig Wooliver, Manasi Balachandran, Tina Richey, R Eric Heidel, Angela D Williams, Stephen J Kennel, Jonathan S Wall\",\"doi\":\"10.1080/13506129.2022.2155133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Systemic amyloidosis refers to a group of protein misfolding disorders characterized by the extracellular deposition of amyloid fibrils in organs and tissues. For reasons heretofore unknown, amyloid deposits are not recognized by the immune system, and progressive deposition leads to organ dysfunction.</p><p><strong>Methods: </strong><i>In vitro</i> and <i>in vivo</i> phagocytosis assays were performed to elucidate the impact of collagen and other amyloid associated proteins (eg serum amyloid p component and apolipoprotein E) had on amyloid phagocytosis. Immunohistochemical and histopathological staining regimens were employed to analyze collagen-amyloid interactions and immune responses.</p><p><strong>Results: </strong>Histological analysis of amyloid-laden tissue indicated that collagen is intimately associated with amyloid deposits. We report that collagen inhibits phagocytosis of amyloid fibrils by macrophages. Treatment of 15 patient-derived amyloid extracts with collagenase significantly enhanced amyloid phagocytosis. Preclinical mouse studies indicated that collagenase treatment of amyloid extracts significantly enhanced clearance as compared to controls, coincident with increased immune cell infiltration of the subcutaneous amyloid lesion.</p><p><strong>Conclusions: </strong>These data suggest that amyloid-associated collagen serves as a 'don't eat me' signal, thereby hindering clearance of amyloid. Targeted degradation of amyloid-associated collagen could result in innate immune cell recognition and clearance of pathologic amyloid deposits.</p>\",\"PeriodicalId\":50964,\"journal\":{\"name\":\"Amyloid-Journal of Protein Folding Disorders\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Amyloid-Journal of Protein Folding Disorders\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13506129.2022.2155133\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amyloid-Journal of Protein Folding Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13506129.2022.2155133","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Collagen inhibits phagocytosis of amyloid in vitro and in vivo and may act as a 'don't eat me' signal.
Background: Systemic amyloidosis refers to a group of protein misfolding disorders characterized by the extracellular deposition of amyloid fibrils in organs and tissues. For reasons heretofore unknown, amyloid deposits are not recognized by the immune system, and progressive deposition leads to organ dysfunction.
Methods: In vitro and in vivo phagocytosis assays were performed to elucidate the impact of collagen and other amyloid associated proteins (eg serum amyloid p component and apolipoprotein E) had on amyloid phagocytosis. Immunohistochemical and histopathological staining regimens were employed to analyze collagen-amyloid interactions and immune responses.
Results: Histological analysis of amyloid-laden tissue indicated that collagen is intimately associated with amyloid deposits. We report that collagen inhibits phagocytosis of amyloid fibrils by macrophages. Treatment of 15 patient-derived amyloid extracts with collagenase significantly enhanced amyloid phagocytosis. Preclinical mouse studies indicated that collagenase treatment of amyloid extracts significantly enhanced clearance as compared to controls, coincident with increased immune cell infiltration of the subcutaneous amyloid lesion.
Conclusions: These data suggest that amyloid-associated collagen serves as a 'don't eat me' signal, thereby hindering clearance of amyloid. Targeted degradation of amyloid-associated collagen could result in innate immune cell recognition and clearance of pathologic amyloid deposits.
期刊介绍:
Amyloid: the Journal of Protein Folding Disorders is dedicated to the study of all aspects of the protein groups and associated disorders that are classified as the amyloidoses as well as other disorders associated with abnormal protein folding. The journals major focus points are:
etiology,
pathogenesis,
histopathology,
chemical structure,
nature of fibrillogenesis;
whilst also publishing papers on the basic and chemical genetic aspects of many of these disorders.
Amyloid is recognised as one of the leading publications on amyloid protein classifications and the associated disorders, as well as clinical studies on all aspects of amyloid related neurodegenerative diseases and major clinical studies on inherited amyloidosis, especially those related to transthyretin. The Journal also publishes book reviews, meeting reports, editorials, thesis abstracts, review articles and symposia in the various areas listed above.