{"title":"超高效液相色谱-质谱联用技术(UPLC-MS/MS)控制11种大麻素的质量。","authors":"Ashraf Duzan, Desiree Reinken, Mufeed M Basti","doi":"10.1155/2023/3753083","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Cannabinoid extraction from <i>Cannabis sativa</i> L. (hemp) for nonmedical purposes has become popular in the United States. Concerns, however, have been raised regarding the accuracy of the labels for cannabinoid levels in the commercial products.</p><p><strong>Methods: </strong>In this study, we developed rapid, sensitive, selective, accurate, and validated liquid chromatography-tandem mass spectrometry for the quantification of cannabinoids. The methods are for determining 11 cannabinoids in cannabis (hemp) extracted in oil form, and we investigated the accuracy of the labeling and thermal stability regarding the cannabinoids on 17 oil cannabis samples.</p><p><strong>Results: </strong>In the UPLC chromatogram, we see a good resolution and there is no matrix effect and the accuracy were 98.2% to 102.6%, and the precision was 0.52%-8.18%. The linearity of the calibration curves in methanol was with a regression <i>r</i><sup>2</sup> ≥ 0.99. The lowest of detection (LOD) was 5-25 ng/mL, and the limit of quantification (LOQ) was 10-50 ng/mL. The study showed that only 30% of the commercial samples were within the acceptable range of +/-10% compared to the labeled ingredient concentrations. The thermal stability test profile showed a change in the concentration of cannabinoids in each sample at 37°C for one week, with an average loss of cannabinoids up to 15%.</p><p><strong>Conclusion: </strong>The validated method proved to be selective, accurate, and precise, with acceptable linearity within the calibration range with no matrix effect. The stability profile data indicated that high temperatures could change the quality of commercial samples.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435299/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quality Control of 11 Cannabinoids by Ultraperformance Liquid Chromatography Coupled with Mass Spectrometry (UPLC-MS/MS).\",\"authors\":\"Ashraf Duzan, Desiree Reinken, Mufeed M Basti\",\"doi\":\"10.1155/2023/3753083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Cannabinoid extraction from <i>Cannabis sativa</i> L. (hemp) for nonmedical purposes has become popular in the United States. Concerns, however, have been raised regarding the accuracy of the labels for cannabinoid levels in the commercial products.</p><p><strong>Methods: </strong>In this study, we developed rapid, sensitive, selective, accurate, and validated liquid chromatography-tandem mass spectrometry for the quantification of cannabinoids. The methods are for determining 11 cannabinoids in cannabis (hemp) extracted in oil form, and we investigated the accuracy of the labeling and thermal stability regarding the cannabinoids on 17 oil cannabis samples.</p><p><strong>Results: </strong>In the UPLC chromatogram, we see a good resolution and there is no matrix effect and the accuracy were 98.2% to 102.6%, and the precision was 0.52%-8.18%. The linearity of the calibration curves in methanol was with a regression <i>r</i><sup>2</sup> ≥ 0.99. The lowest of detection (LOD) was 5-25 ng/mL, and the limit of quantification (LOQ) was 10-50 ng/mL. The study showed that only 30% of the commercial samples were within the acceptable range of +/-10% compared to the labeled ingredient concentrations. The thermal stability test profile showed a change in the concentration of cannabinoids in each sample at 37°C for one week, with an average loss of cannabinoids up to 15%.</p><p><strong>Conclusion: </strong>The validated method proved to be selective, accurate, and precise, with acceptable linearity within the calibration range with no matrix effect. The stability profile data indicated that high temperatures could change the quality of commercial samples.</p>\",\"PeriodicalId\":14974,\"journal\":{\"name\":\"Journal of Analytical Methods in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10435299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Methods in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3753083\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/3753083","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Quality Control of 11 Cannabinoids by Ultraperformance Liquid Chromatography Coupled with Mass Spectrometry (UPLC-MS/MS).
Objective: Cannabinoid extraction from Cannabis sativa L. (hemp) for nonmedical purposes has become popular in the United States. Concerns, however, have been raised regarding the accuracy of the labels for cannabinoid levels in the commercial products.
Methods: In this study, we developed rapid, sensitive, selective, accurate, and validated liquid chromatography-tandem mass spectrometry for the quantification of cannabinoids. The methods are for determining 11 cannabinoids in cannabis (hemp) extracted in oil form, and we investigated the accuracy of the labeling and thermal stability regarding the cannabinoids on 17 oil cannabis samples.
Results: In the UPLC chromatogram, we see a good resolution and there is no matrix effect and the accuracy were 98.2% to 102.6%, and the precision was 0.52%-8.18%. The linearity of the calibration curves in methanol was with a regression r2 ≥ 0.99. The lowest of detection (LOD) was 5-25 ng/mL, and the limit of quantification (LOQ) was 10-50 ng/mL. The study showed that only 30% of the commercial samples were within the acceptable range of +/-10% compared to the labeled ingredient concentrations. The thermal stability test profile showed a change in the concentration of cannabinoids in each sample at 37°C for one week, with an average loss of cannabinoids up to 15%.
Conclusion: The validated method proved to be selective, accurate, and precise, with acceptable linearity within the calibration range with no matrix effect. The stability profile data indicated that high temperatures could change the quality of commercial samples.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.