Juan Pedro Cascales*, Adina E. Draghici, Helen Keshishian, J. Andrew Taylor and Conor L. Evans*,
{"title":"基于反边界问题的经皮氧合可穿戴应用组织氧合计算","authors":"Juan Pedro Cascales*, Adina E. Draghici, Helen Keshishian, J. Andrew Taylor and Conor L. Evans*, ","doi":"10.1021/acsmeasuresciau.3c00013","DOIUrl":null,"url":null,"abstract":"<p >In this article, we present a toolset to fully leverage a previously developed transcutaneous oxygenation monitor (TCOM) wearable technology to accurately measure skin oxygenation values. We describe numerical models and experimental characterization techniques that allow for the extraction of precise tissue oxygenation measurements. The numerical model is based on an inverse boundary problem of the parabolic equation with Dirichlet boundary conditions. To validate this model and characterize the diffusion of oxygen through the oxygen sensing materials, we designed a series of control/calibration experiments modeled after the device’s clinical application using oxygenation values in the physiological range expected for healthy tissue. Our results demonstrate that it is possible to obtain accurate tissue pO<sub>2</sub> measurements without the need for long equilibration times with a small wearable device.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/56/5a/tg3c00013.PMC10436371.pdf","citationCount":"1","resultStr":"{\"title\":\"Calculation of Tissue Oxygenation via an Inverse Boundary Problem for Transcutaneous Oxygenation Wearable Applications\",\"authors\":\"Juan Pedro Cascales*, Adina E. Draghici, Helen Keshishian, J. Andrew Taylor and Conor L. Evans*, \",\"doi\":\"10.1021/acsmeasuresciau.3c00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this article, we present a toolset to fully leverage a previously developed transcutaneous oxygenation monitor (TCOM) wearable technology to accurately measure skin oxygenation values. We describe numerical models and experimental characterization techniques that allow for the extraction of precise tissue oxygenation measurements. The numerical model is based on an inverse boundary problem of the parabolic equation with Dirichlet boundary conditions. To validate this model and characterize the diffusion of oxygen through the oxygen sensing materials, we designed a series of control/calibration experiments modeled after the device’s clinical application using oxygenation values in the physiological range expected for healthy tissue. Our results demonstrate that it is possible to obtain accurate tissue pO<sub>2</sub> measurements without the need for long equilibration times with a small wearable device.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/56/5a/tg3c00013.PMC10436371.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Calculation of Tissue Oxygenation via an Inverse Boundary Problem for Transcutaneous Oxygenation Wearable Applications
In this article, we present a toolset to fully leverage a previously developed transcutaneous oxygenation monitor (TCOM) wearable technology to accurately measure skin oxygenation values. We describe numerical models and experimental characterization techniques that allow for the extraction of precise tissue oxygenation measurements. The numerical model is based on an inverse boundary problem of the parabolic equation with Dirichlet boundary conditions. To validate this model and characterize the diffusion of oxygen through the oxygen sensing materials, we designed a series of control/calibration experiments modeled after the device’s clinical application using oxygenation values in the physiological range expected for healthy tissue. Our results demonstrate that it is possible to obtain accurate tissue pO2 measurements without the need for long equilibration times with a small wearable device.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.