Vladimir I. Bakhmutov , Douglas W. Elliott , Nattamai Bhuvanesh , Hong-Cai Zhou
{"title":"顺磁杂质污染层状α-Sn(IV)磷酸盐中磷-31核磁共振弛豫的自旋扩散","authors":"Vladimir I. Bakhmutov , Douglas W. Elliott , Nattamai Bhuvanesh , Hong-Cai Zhou","doi":"10.1016/j.ssnmr.2023.101875","DOIUrl":null,"url":null,"abstract":"<div><p>The study of a layered crystalline Sn(IV) phosphate by solid-state NMR has demonstrated that the <sup>31</sup>P T<sub>1</sub><span><span> relaxation of phosphate groups, dependent on spinning rate is completely controlled by the limited </span>spin diffusion<span> to paramagnetic ions found by EPR. The spin-diffusion constant, D(SD), was estimated as 2.04 10</span></span><sup>−14</sup> cm<sup>2</sup>s<sup>−1</sup>. The conclusion was supported by the <sup>31</sup>P T<sub>1</sub><span> time measurements in zirconium phosphate </span><strong>1</strong>–<strong>1</strong><span>, also showing paramagnetic ions and in diamagnetic compound (NH</span><sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spin diffusion in the Phosphorus-31 NMR relaxation in a layered crystalline α-Sn(IV) phosphate contaminated by paramagnetic impurities\",\"authors\":\"Vladimir I. Bakhmutov , Douglas W. Elliott , Nattamai Bhuvanesh , Hong-Cai Zhou\",\"doi\":\"10.1016/j.ssnmr.2023.101875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of a layered crystalline Sn(IV) phosphate by solid-state NMR has demonstrated that the <sup>31</sup>P T<sub>1</sub><span><span> relaxation of phosphate groups, dependent on spinning rate is completely controlled by the limited </span>spin diffusion<span> to paramagnetic ions found by EPR. The spin-diffusion constant, D(SD), was estimated as 2.04 10</span></span><sup>−14</sup> cm<sup>2</sup>s<sup>−1</sup>. The conclusion was supported by the <sup>31</sup>P T<sub>1</sub><span> time measurements in zirconium phosphate </span><strong>1</strong>–<strong>1</strong><span>, also showing paramagnetic ions and in diamagnetic compound (NH</span><sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>.</p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204023000255\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204023000255","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Spin diffusion in the Phosphorus-31 NMR relaxation in a layered crystalline α-Sn(IV) phosphate contaminated by paramagnetic impurities
The study of a layered crystalline Sn(IV) phosphate by solid-state NMR has demonstrated that the 31P T1 relaxation of phosphate groups, dependent on spinning rate is completely controlled by the limited spin diffusion to paramagnetic ions found by EPR. The spin-diffusion constant, D(SD), was estimated as 2.04 10−14 cm2s−1. The conclusion was supported by the 31P T1 time measurements in zirconium phosphate 1–1, also showing paramagnetic ions and in diamagnetic compound (NH4)2HPO4.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.