{"title":"核中的油脂:洞察核膜的动态寿命。","authors":"Deepak Anand, Arunima Chaudhuri","doi":"10.1007/s00232-022-00272-8","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleus is at the center stage of cellular drama orchestrated in the life of a cell and the nucleoplasm is surrounded by a double membranous compartment constituting the Nuclear membrane/envelope (NE) that separates it from the cytoplasm in nucleated cells. The initial understanding of the NE was that of a border security entity between the nucleus and the cytoplasm, separating gene regulation and transcription in the nucleus from translation in the cytoplasm. However, the discovery of a wide array of inherited diseases caused by mutations in genes encoding proteins that reside or interact with NE diverted the interest into deciphering the lipid-protein-rich environment of the NE. Today, the NE is considered a dynamic organelle which forms a functional linkage between the nucleus and the rest of the cell. The exposure of NE to constant mechanical constraints by its connectivity to the large polymer network of the lamina and chromatin on one side, and to the cytoskeleton on the other side results, in a variety of shape changes. We discuss two such deformation, the formation of nuclear blebs and nucleoplasmic reticulum (NER). Although the protein and the lipid composition of NE comprises a small fraction of the total lipid-protein load of the cell, the ability to define the lipid-protein composition of Inner nuclear membrane (INM) and Outer nuclear membrane (ONM) with precision is crucial for obtaining a deeper mechanistic understanding of their lipid-protein interaction and the various signaling pathways that are triggered by them. In addition, this allows us to further understand the direct and indirect roles of NE machinery in the chromosomal organization and gene regulation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082704/pdf/","citationCount":"1","resultStr":"{\"title\":\"Grease in the Nucleus: Insights into the Dynamic Life of Nuclear Membranes.\",\"authors\":\"Deepak Anand, Arunima Chaudhuri\",\"doi\":\"10.1007/s00232-022-00272-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nucleus is at the center stage of cellular drama orchestrated in the life of a cell and the nucleoplasm is surrounded by a double membranous compartment constituting the Nuclear membrane/envelope (NE) that separates it from the cytoplasm in nucleated cells. The initial understanding of the NE was that of a border security entity between the nucleus and the cytoplasm, separating gene regulation and transcription in the nucleus from translation in the cytoplasm. However, the discovery of a wide array of inherited diseases caused by mutations in genes encoding proteins that reside or interact with NE diverted the interest into deciphering the lipid-protein-rich environment of the NE. Today, the NE is considered a dynamic organelle which forms a functional linkage between the nucleus and the rest of the cell. The exposure of NE to constant mechanical constraints by its connectivity to the large polymer network of the lamina and chromatin on one side, and to the cytoskeleton on the other side results, in a variety of shape changes. We discuss two such deformation, the formation of nuclear blebs and nucleoplasmic reticulum (NER). Although the protein and the lipid composition of NE comprises a small fraction of the total lipid-protein load of the cell, the ability to define the lipid-protein composition of Inner nuclear membrane (INM) and Outer nuclear membrane (ONM) with precision is crucial for obtaining a deeper mechanistic understanding of their lipid-protein interaction and the various signaling pathways that are triggered by them. In addition, this allows us to further understand the direct and indirect roles of NE machinery in the chromosomal organization and gene regulation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082704/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-022-00272-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-022-00272-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Grease in the Nucleus: Insights into the Dynamic Life of Nuclear Membranes.
Nucleus is at the center stage of cellular drama orchestrated in the life of a cell and the nucleoplasm is surrounded by a double membranous compartment constituting the Nuclear membrane/envelope (NE) that separates it from the cytoplasm in nucleated cells. The initial understanding of the NE was that of a border security entity between the nucleus and the cytoplasm, separating gene regulation and transcription in the nucleus from translation in the cytoplasm. However, the discovery of a wide array of inherited diseases caused by mutations in genes encoding proteins that reside or interact with NE diverted the interest into deciphering the lipid-protein-rich environment of the NE. Today, the NE is considered a dynamic organelle which forms a functional linkage between the nucleus and the rest of the cell. The exposure of NE to constant mechanical constraints by its connectivity to the large polymer network of the lamina and chromatin on one side, and to the cytoskeleton on the other side results, in a variety of shape changes. We discuss two such deformation, the formation of nuclear blebs and nucleoplasmic reticulum (NER). Although the protein and the lipid composition of NE comprises a small fraction of the total lipid-protein load of the cell, the ability to define the lipid-protein composition of Inner nuclear membrane (INM) and Outer nuclear membrane (ONM) with precision is crucial for obtaining a deeper mechanistic understanding of their lipid-protein interaction and the various signaling pathways that are triggered by them. In addition, this allows us to further understand the direct and indirect roles of NE machinery in the chromosomal organization and gene regulation.