{"title":"超分子聚合物刷","authors":"Friederike K. Metze, and , Harm-Anton Klok*, ","doi":"10.1021/acspolymersau.2c00067","DOIUrl":null,"url":null,"abstract":"<p >Polymer brushes are thin polymer films that consist of densely grafted, chain-end tethered polymers. These thin polymer films can be produced either by anchoring presynthesized chain-end functional polymers to the surface of interest (“grafting to”), or by using appropriately modified surfaces to facilitate growth of polymer chains from the substrate (“grafting from”). The vast majority of polymer brushes that have been prepared and studied so far involved chain-end tethered polymer assemblies that are anchored to the surface via covalent bonds. In contrast, the use of noncovalent interactions to prepare chain-end tethered polymer thin films is much less explored. Anchoring or growing polymer chains using noncovalent interactions results in supramolecular polymer brushes. Supramolecular polymer brushes may possess unique chain dynamics as opposed to their covalently tethered counterparts, which could provide avenues to, for example, renewable or (self-)healable surface coatings. This Perspective article provides an overview of the various approaches that have been used so far to prepare supramolecular polymer brushes. After presenting an overview of the various approaches that have been used to prepare supramolecular brushes via the “grafting to” strategy, examples will be presented of strategies that have been successfully applied to produce supramolecular polymer brushes via “grafting from” methods.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 3","pages":"228–238"},"PeriodicalIF":4.7000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.2c00067","citationCount":"0","resultStr":"{\"title\":\"Supramolecular Polymer Brushes\",\"authors\":\"Friederike K. Metze, and , Harm-Anton Klok*, \",\"doi\":\"10.1021/acspolymersau.2c00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polymer brushes are thin polymer films that consist of densely grafted, chain-end tethered polymers. These thin polymer films can be produced either by anchoring presynthesized chain-end functional polymers to the surface of interest (“grafting to”), or by using appropriately modified surfaces to facilitate growth of polymer chains from the substrate (“grafting from”). The vast majority of polymer brushes that have been prepared and studied so far involved chain-end tethered polymer assemblies that are anchored to the surface via covalent bonds. In contrast, the use of noncovalent interactions to prepare chain-end tethered polymer thin films is much less explored. Anchoring or growing polymer chains using noncovalent interactions results in supramolecular polymer brushes. Supramolecular polymer brushes may possess unique chain dynamics as opposed to their covalently tethered counterparts, which could provide avenues to, for example, renewable or (self-)healable surface coatings. This Perspective article provides an overview of the various approaches that have been used so far to prepare supramolecular polymer brushes. After presenting an overview of the various approaches that have been used to prepare supramolecular brushes via the “grafting to” strategy, examples will be presented of strategies that have been successfully applied to produce supramolecular polymer brushes via “grafting from” methods.</p>\",\"PeriodicalId\":72049,\"journal\":{\"name\":\"ACS polymers Au\",\"volume\":\"3 3\",\"pages\":\"228–238\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.2c00067\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS polymers Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acspolymersau.2c00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.2c00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Polymer brushes are thin polymer films that consist of densely grafted, chain-end tethered polymers. These thin polymer films can be produced either by anchoring presynthesized chain-end functional polymers to the surface of interest (“grafting to”), or by using appropriately modified surfaces to facilitate growth of polymer chains from the substrate (“grafting from”). The vast majority of polymer brushes that have been prepared and studied so far involved chain-end tethered polymer assemblies that are anchored to the surface via covalent bonds. In contrast, the use of noncovalent interactions to prepare chain-end tethered polymer thin films is much less explored. Anchoring or growing polymer chains using noncovalent interactions results in supramolecular polymer brushes. Supramolecular polymer brushes may possess unique chain dynamics as opposed to their covalently tethered counterparts, which could provide avenues to, for example, renewable or (self-)healable surface coatings. This Perspective article provides an overview of the various approaches that have been used so far to prepare supramolecular polymer brushes. After presenting an overview of the various approaches that have been used to prepare supramolecular brushes via the “grafting to” strategy, examples will be presented of strategies that have been successfully applied to produce supramolecular polymer brushes via “grafting from” methods.