Colleen C Naughton, Fernando A Roman, Ana Grace F Alvarado, Arianna Q Tariqi, Matthew A Deeming, Krystin F Kadonsky, Kyle Bibby, Aaron Bivins, Gertjan Medema, Warish Ahmed, Panagis Katsivelis, Vajra Allan, Ryan Sinclair, Joan B Rose
{"title":"向我们展示数据:全球COVID-19废水监测工作、公平性和差距。","authors":"Colleen C Naughton, Fernando A Roman, Ana Grace F Alvarado, Arianna Q Tariqi, Matthew A Deeming, Krystin F Kadonsky, Kyle Bibby, Aaron Bivins, Gertjan Medema, Warish Ahmed, Panagis Katsivelis, Vajra Allan, Ryan Sinclair, Joan B Rose","doi":"10.1093/femsmc/xtad003","DOIUrl":null,"url":null,"abstract":"<p><p>A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater. Unlike COVID-19 case and mortality data, there was not a global dashboard to track wastewater monitoring of SARS-CoV-2 RNA worldwide. This study provides a 1-year review of the \"COVIDPoops19\" global dashboard of universities, sites, and countries monitoring SARS-CoV-2 RNA in wastewater. Methods to assemble the dashboard combined standard literature review, Google Form submissions, and daily, social media keyword searches. Over 200 universities, 1400 sites, and 55 countries with 59 dashboards monitored wastewater for SARS-CoV-2 RNA. However, monitoring was primarily in high-income countries (65%) with less access to this valuable tool in low- and middle-income countries (35%). Data were not widely shared publicly or accessible to researchers to further inform public health actions, perform meta-analysis, better coordinate, and determine equitable distribution of monitoring sites. For WBE to be used to its full potential during COVID-19 and beyond, show us the data.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"4 ","pages":"xtad003"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117741/pdf/","citationCount":"110","resultStr":"{\"title\":\"Show us the data: global COVID-19 wastewater monitoring efforts, equity, and gaps.\",\"authors\":\"Colleen C Naughton, Fernando A Roman, Ana Grace F Alvarado, Arianna Q Tariqi, Matthew A Deeming, Krystin F Kadonsky, Kyle Bibby, Aaron Bivins, Gertjan Medema, Warish Ahmed, Panagis Katsivelis, Vajra Allan, Ryan Sinclair, Joan B Rose\",\"doi\":\"10.1093/femsmc/xtad003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater. Unlike COVID-19 case and mortality data, there was not a global dashboard to track wastewater monitoring of SARS-CoV-2 RNA worldwide. This study provides a 1-year review of the \\\"COVIDPoops19\\\" global dashboard of universities, sites, and countries monitoring SARS-CoV-2 RNA in wastewater. Methods to assemble the dashboard combined standard literature review, Google Form submissions, and daily, social media keyword searches. Over 200 universities, 1400 sites, and 55 countries with 59 dashboards monitored wastewater for SARS-CoV-2 RNA. However, monitoring was primarily in high-income countries (65%) with less access to this valuable tool in low- and middle-income countries (35%). Data were not widely shared publicly or accessible to researchers to further inform public health actions, perform meta-analysis, better coordinate, and determine equitable distribution of monitoring sites. For WBE to be used to its full potential during COVID-19 and beyond, show us the data.</p>\",\"PeriodicalId\":73024,\"journal\":{\"name\":\"FEMS microbes\",\"volume\":\"4 \",\"pages\":\"xtad003\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10117741/pdf/\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsmc/xtad003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsmc/xtad003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Show us the data: global COVID-19 wastewater monitoring efforts, equity, and gaps.
A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater. Unlike COVID-19 case and mortality data, there was not a global dashboard to track wastewater monitoring of SARS-CoV-2 RNA worldwide. This study provides a 1-year review of the "COVIDPoops19" global dashboard of universities, sites, and countries monitoring SARS-CoV-2 RNA in wastewater. Methods to assemble the dashboard combined standard literature review, Google Form submissions, and daily, social media keyword searches. Over 200 universities, 1400 sites, and 55 countries with 59 dashboards monitored wastewater for SARS-CoV-2 RNA. However, monitoring was primarily in high-income countries (65%) with less access to this valuable tool in low- and middle-income countries (35%). Data were not widely shared publicly or accessible to researchers to further inform public health actions, perform meta-analysis, better coordinate, and determine equitable distribution of monitoring sites. For WBE to be used to its full potential during COVID-19 and beyond, show us the data.