Rishab Trivedi, Bappaditya Chatterjee, Sana Kalave, Mrugank Pandya
{"title":"细二氧化硅作为非晶固体分散载体在增强药物负荷和防止再结晶中的作用综述。","authors":"Rishab Trivedi, Bappaditya Chatterjee, Sana Kalave, Mrugank Pandya","doi":"10.2174/1567201819666220721111852","DOIUrl":null,"url":null,"abstract":"<p><p>Amorphous solid dispersion (ASD) is a popular concept for improving the dissolution and oral bioavailability of poorly water-soluble drugs. ASD faces two primary challenges of low drug loading and recrystallization upon storage. Several polymeric carriers are used to fabricate a stable ASD formulation with a high drug load. The role of silica in this context has been proven significant. Different types of silica, porous and nonporous, have been used to develop ASD. Amorphous drugs get entrapped into silica pores or adsorbed on their surface. Due to high porosity and wide surface area, silica provides better drug dissolution and high drug loading. Recrystallization of amorphous drugs is inhibited by limited molecular ability inside the delicate pores due to hydrogen bonding with the surface silanol groups. A handful of researches have been published on silica-based ASD, where versatile types of silica have been used. However, the effect of different kinds of silica on product stability and drug loading has been rarely addressed. The present study analyzes multiple porous and nonporous silica types and their distinct role in developing a stable ASD. Emphasis has been given to various types of silica which are commonly used in the pharmaceutical industry.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"20 6","pages":"694-707"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Fine Silica as Amorphous Solid Dispersion Carriers for Enhancing Drug Load and Preventing Recrystallization- A Comprehensive Review.\",\"authors\":\"Rishab Trivedi, Bappaditya Chatterjee, Sana Kalave, Mrugank Pandya\",\"doi\":\"10.2174/1567201819666220721111852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amorphous solid dispersion (ASD) is a popular concept for improving the dissolution and oral bioavailability of poorly water-soluble drugs. ASD faces two primary challenges of low drug loading and recrystallization upon storage. Several polymeric carriers are used to fabricate a stable ASD formulation with a high drug load. The role of silica in this context has been proven significant. Different types of silica, porous and nonporous, have been used to develop ASD. Amorphous drugs get entrapped into silica pores or adsorbed on their surface. Due to high porosity and wide surface area, silica provides better drug dissolution and high drug loading. Recrystallization of amorphous drugs is inhibited by limited molecular ability inside the delicate pores due to hydrogen bonding with the surface silanol groups. A handful of researches have been published on silica-based ASD, where versatile types of silica have been used. However, the effect of different kinds of silica on product stability and drug loading has been rarely addressed. The present study analyzes multiple porous and nonporous silica types and their distinct role in developing a stable ASD. Emphasis has been given to various types of silica which are commonly used in the pharmaceutical industry.</p>\",\"PeriodicalId\":10842,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\"20 6\",\"pages\":\"694-707\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567201819666220721111852\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567201819666220721111852","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Role of Fine Silica as Amorphous Solid Dispersion Carriers for Enhancing Drug Load and Preventing Recrystallization- A Comprehensive Review.
Amorphous solid dispersion (ASD) is a popular concept for improving the dissolution and oral bioavailability of poorly water-soluble drugs. ASD faces two primary challenges of low drug loading and recrystallization upon storage. Several polymeric carriers are used to fabricate a stable ASD formulation with a high drug load. The role of silica in this context has been proven significant. Different types of silica, porous and nonporous, have been used to develop ASD. Amorphous drugs get entrapped into silica pores or adsorbed on their surface. Due to high porosity and wide surface area, silica provides better drug dissolution and high drug loading. Recrystallization of amorphous drugs is inhibited by limited molecular ability inside the delicate pores due to hydrogen bonding with the surface silanol groups. A handful of researches have been published on silica-based ASD, where versatile types of silica have been used. However, the effect of different kinds of silica on product stability and drug loading has been rarely addressed. The present study analyzes multiple porous and nonporous silica types and their distinct role in developing a stable ASD. Emphasis has been given to various types of silica which are commonly used in the pharmaceutical industry.
期刊介绍:
Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves.
The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.
The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.