Yang Liu, Weilin Lan, Yahong Wang, Wenbao Bai, Hongli Zhou, Peng Wan
{"title":"韩、中灵芝灵芝孢子粉的红外光谱化学计量学差异分析","authors":"Yang Liu, Weilin Lan, Yahong Wang, Wenbao Bai, Hongli Zhou, Peng Wan","doi":"10.1615/IntJMedMushrooms.2023048272","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the differences between Korean Ganoderma lucidum spore powder (KP), broken-spo-roderm KP (BSKP), Chinese traditional G. lucidum spore powder (CP), and broken-sporoderm CP (BSCP), they were identified by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy (SD-IR), dual-index sequence analysis (DISA) and X-ray diffraction (XRD). SEM showed that there were no significant differences in microstructure between the two kinds of spore powders. FT-IR spectra showed that the four spore powders appeared with characteristic peaks of 3400, 3006, 2925, 1745, 1535, 1454, 1249, 1074, 1049, and 896 cm-1, respectively, they were contained the characteristic peaks of total triterpenes, polysaccharides and fatty acids. DISA showed that the same species of spore powders, the overall similarity of before and broken the sporoderm was high with minor differences and there were no differences between the different kinds of spore powders. Similarity analysis showed that the four spore powders were in high agreement and were no differences. The polysaccharide, total triterpene, spore oil and protein content of the four spore powders were determined separately. The results showed that the active ingredients content of the batch of KP were lower than that of CP, that of BSKP were lower than that of BSCP, while the active ingredients content of both broken-sporoderm spore powders were higher than that of before broken-sporoderm. It is inferred that the structure of the main chemical and component of KP is the same as that of CP. This study provides a reference for the future development and application of G. lucidum.</p>","PeriodicalId":14025,"journal":{"name":"International journal of medicinal mushrooms","volume":"25 6","pages":"87-98"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Analysis of Korean and Chinese Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) Spore Powder by Infrared Spectroscopy with Stoichiometry.\",\"authors\":\"Yang Liu, Weilin Lan, Yahong Wang, Wenbao Bai, Hongli Zhou, Peng Wan\",\"doi\":\"10.1615/IntJMedMushrooms.2023048272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To investigate the differences between Korean Ganoderma lucidum spore powder (KP), broken-spo-roderm KP (BSKP), Chinese traditional G. lucidum spore powder (CP), and broken-sporoderm CP (BSCP), they were identified by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy (SD-IR), dual-index sequence analysis (DISA) and X-ray diffraction (XRD). SEM showed that there were no significant differences in microstructure between the two kinds of spore powders. FT-IR spectra showed that the four spore powders appeared with characteristic peaks of 3400, 3006, 2925, 1745, 1535, 1454, 1249, 1074, 1049, and 896 cm-1, respectively, they were contained the characteristic peaks of total triterpenes, polysaccharides and fatty acids. DISA showed that the same species of spore powders, the overall similarity of before and broken the sporoderm was high with minor differences and there were no differences between the different kinds of spore powders. Similarity analysis showed that the four spore powders were in high agreement and were no differences. The polysaccharide, total triterpene, spore oil and protein content of the four spore powders were determined separately. The results showed that the active ingredients content of the batch of KP were lower than that of CP, that of BSKP were lower than that of BSCP, while the active ingredients content of both broken-sporoderm spore powders were higher than that of before broken-sporoderm. It is inferred that the structure of the main chemical and component of KP is the same as that of CP. This study provides a reference for the future development and application of G. lucidum.</p>\",\"PeriodicalId\":14025,\"journal\":{\"name\":\"International journal of medicinal mushrooms\",\"volume\":\"25 6\",\"pages\":\"87-98\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of medicinal mushrooms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1615/IntJMedMushrooms.2023048272\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of medicinal mushrooms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1615/IntJMedMushrooms.2023048272","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MYCOLOGY","Score":null,"Total":0}
Differential Analysis of Korean and Chinese Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) Spore Powder by Infrared Spectroscopy with Stoichiometry.
To investigate the differences between Korean Ganoderma lucidum spore powder (KP), broken-spo-roderm KP (BSKP), Chinese traditional G. lucidum spore powder (CP), and broken-sporoderm CP (BSCP), they were identified by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy (SD-IR), dual-index sequence analysis (DISA) and X-ray diffraction (XRD). SEM showed that there were no significant differences in microstructure between the two kinds of spore powders. FT-IR spectra showed that the four spore powders appeared with characteristic peaks of 3400, 3006, 2925, 1745, 1535, 1454, 1249, 1074, 1049, and 896 cm-1, respectively, they were contained the characteristic peaks of total triterpenes, polysaccharides and fatty acids. DISA showed that the same species of spore powders, the overall similarity of before and broken the sporoderm was high with minor differences and there were no differences between the different kinds of spore powders. Similarity analysis showed that the four spore powders were in high agreement and were no differences. The polysaccharide, total triterpene, spore oil and protein content of the four spore powders were determined separately. The results showed that the active ingredients content of the batch of KP were lower than that of CP, that of BSKP were lower than that of BSCP, while the active ingredients content of both broken-sporoderm spore powders were higher than that of before broken-sporoderm. It is inferred that the structure of the main chemical and component of KP is the same as that of CP. This study provides a reference for the future development and application of G. lucidum.
期刊介绍:
The rapid growth of interest in medicinal mushrooms research is matched by the large number of disparate groups that currently publish in a wide range of publications. The International Journal of Medicinal Mushrooms is the one source of information that will draw together all aspects of this exciting and expanding field - a source that will keep you up to date with the latest issues and practice. The International Journal of Medicinal Mushrooms published original research articles and critical reviews on a broad range of subjects pertaining to medicinal mushrooms, including systematics, nomenclature, taxonomy, morphology, medicinal value, biotechnology, and much more.