{"title":"基于多层次特征和双注意协调机制的u型网络CCTA图像冠状动脉分割","authors":"Peng Hong, Yong Du, Dongming Chen, Chengbao Peng, Benqiang Yang, Lisheng Xu","doi":"10.1007/s13239-023-00659-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Computed tomography coronary angiography (CCTA) images provide optimal visualization of coronary arteries to aid in diagnosing coronary heart disease (CHD). With the deep convolutional neural network, this work aims to develop an intelligent and lightweight coronary artery segmentation algorithm that can be deployed in hospital systems to assist clinicians in quantitatively analyzing CHD.</p><p><strong>Methods: </strong>With the multi-level feature fusion, we proposed Dual-Attention Coordination U-Net (DAC-UNet) that achieves automated coronary artery segmentation in 2D CCTA images. The coronary artery occupies a small region, and the foreground and background are extremely unbalanced. For this reason, the more original information can be retained by fusing related features between adjacent layers, which is conducive to recovering the small coronary artery area. The dual-attention coordination mechanism can select valid information and filter redundant information. Moreover, the complementation and coordination of double attention factors can enhance the integrity of features of coronary arteries, reduce the interference of non-coronary arteries, and prevent over-learning. With gradual learning, the balanced character of double attention factors promotes the generalization ability of the model to enhance coronary artery localization and contour detail segmentation.</p><p><strong>Results: </strong>Compared with existing related segmentation methods, our method achieves a certain degree of improvement in 2D CCTA images for the segmentation accuracy of coronary arteries with a mean Dice index of 0.7920. Furthermore, the method can obtain relatively accurate results even in a small sample dataset and is easy to implement and deploy, which is promising. The code is available at: https://github.com/windfly666/Segmentation .</p><p><strong>Conclusion: </strong>Our method can capture the coronary artery structure end-to-end, which can be used as a fundamental means for automatic detection of coronary artery stenosis, blood flow reserve fraction analysis, and assisting clinicians in diagnosing CHD.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A U-Shaped Network Based on Multi-level Feature and Dual-Attention Coordination Mechanism for Coronary Artery Segmentation of CCTA Images.\",\"authors\":\"Peng Hong, Yong Du, Dongming Chen, Chengbao Peng, Benqiang Yang, Lisheng Xu\",\"doi\":\"10.1007/s13239-023-00659-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Computed tomography coronary angiography (CCTA) images provide optimal visualization of coronary arteries to aid in diagnosing coronary heart disease (CHD). With the deep convolutional neural network, this work aims to develop an intelligent and lightweight coronary artery segmentation algorithm that can be deployed in hospital systems to assist clinicians in quantitatively analyzing CHD.</p><p><strong>Methods: </strong>With the multi-level feature fusion, we proposed Dual-Attention Coordination U-Net (DAC-UNet) that achieves automated coronary artery segmentation in 2D CCTA images. The coronary artery occupies a small region, and the foreground and background are extremely unbalanced. For this reason, the more original information can be retained by fusing related features between adjacent layers, which is conducive to recovering the small coronary artery area. The dual-attention coordination mechanism can select valid information and filter redundant information. Moreover, the complementation and coordination of double attention factors can enhance the integrity of features of coronary arteries, reduce the interference of non-coronary arteries, and prevent over-learning. With gradual learning, the balanced character of double attention factors promotes the generalization ability of the model to enhance coronary artery localization and contour detail segmentation.</p><p><strong>Results: </strong>Compared with existing related segmentation methods, our method achieves a certain degree of improvement in 2D CCTA images for the segmentation accuracy of coronary arteries with a mean Dice index of 0.7920. Furthermore, the method can obtain relatively accurate results even in a small sample dataset and is easy to implement and deploy, which is promising. The code is available at: https://github.com/windfly666/Segmentation .</p><p><strong>Conclusion: </strong>Our method can capture the coronary artery structure end-to-end, which can be used as a fundamental means for automatic detection of coronary artery stenosis, blood flow reserve fraction analysis, and assisting clinicians in diagnosing CHD.</p>\",\"PeriodicalId\":54322,\"journal\":{\"name\":\"Cardiovascular Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13239-023-00659-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-023-00659-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
A U-Shaped Network Based on Multi-level Feature and Dual-Attention Coordination Mechanism for Coronary Artery Segmentation of CCTA Images.
Purpose: Computed tomography coronary angiography (CCTA) images provide optimal visualization of coronary arteries to aid in diagnosing coronary heart disease (CHD). With the deep convolutional neural network, this work aims to develop an intelligent and lightweight coronary artery segmentation algorithm that can be deployed in hospital systems to assist clinicians in quantitatively analyzing CHD.
Methods: With the multi-level feature fusion, we proposed Dual-Attention Coordination U-Net (DAC-UNet) that achieves automated coronary artery segmentation in 2D CCTA images. The coronary artery occupies a small region, and the foreground and background are extremely unbalanced. For this reason, the more original information can be retained by fusing related features between adjacent layers, which is conducive to recovering the small coronary artery area. The dual-attention coordination mechanism can select valid information and filter redundant information. Moreover, the complementation and coordination of double attention factors can enhance the integrity of features of coronary arteries, reduce the interference of non-coronary arteries, and prevent over-learning. With gradual learning, the balanced character of double attention factors promotes the generalization ability of the model to enhance coronary artery localization and contour detail segmentation.
Results: Compared with existing related segmentation methods, our method achieves a certain degree of improvement in 2D CCTA images for the segmentation accuracy of coronary arteries with a mean Dice index of 0.7920. Furthermore, the method can obtain relatively accurate results even in a small sample dataset and is easy to implement and deploy, which is promising. The code is available at: https://github.com/windfly666/Segmentation .
Conclusion: Our method can capture the coronary artery structure end-to-end, which can be used as a fundamental means for automatic detection of coronary artery stenosis, blood flow reserve fraction analysis, and assisting clinicians in diagnosing CHD.
期刊介绍:
Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.