在COVID-19大流行背景下,硫酸羟氯喹和二磷酸氯喹物质对鱼类早期生命阶段的毒理学影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Isabella Ferreira Silva, Keiza Priscila Enes, Gustavo Machado Rocha, Fernando Pilla Varotti, Leandro Augusto Barbosa, Ralph Gruppi Thomé, Hélio Batista Dos Santos
{"title":"在COVID-19大流行背景下,硫酸羟氯喹和二磷酸氯喹物质对鱼类早期生命阶段的毒理学影响","authors":"Isabella Ferreira Silva,&nbsp;Keiza Priscila Enes,&nbsp;Gustavo Machado Rocha,&nbsp;Fernando Pilla Varotti,&nbsp;Leandro Augusto Barbosa,&nbsp;Ralph Gruppi Thomé,&nbsp;Hélio Batista Dos Santos","doi":"10.1080/10934529.2023.2238587","DOIUrl":null,"url":null,"abstract":"<p><p>Hydroxychloroquine sulfate (HCQ) and chloroquine diphosphate (CQ) have been used at increased rates to treat COVID-19 but can constitute a potential environmental risk. The objective was to evaluate the toxicity of sublethal concentrations of HCQ and CQ in zebrafish embryos/larvae. The 50% lethal concentrations (LC<sub>50</sub>) of HCQ and CQ at 96 h post-fertilization (hpf) were calculated by testing various concentrations on 2,160 embryos. The LC<sub>50</sub> obtained were 560 and 800 µM for HCQ and CQ, respectively. Next, the embryotoxicity assay was performed, where 1,200 embryos were subjected to sublethal concentrations of HCQ and CQ. The hatching and heart rates were recorded. After euthanasia, photomicrographs of all larvae were taken to measure the total length, pericardial and yolk sac areas. The embryos exposed to sublethal concentrations of HCQ and CQ showed delayed hatching at 72 hpf, as well as an increase in the heart rate, larger pericardial and yolk sac areas, and body malformations at 96 hpf. The findings show that HCQ and CQ are toxic to fish in the early development phases. Understanding the mechanisms of toxicity will help extrapolate the effects of 4-aminoquinoline derivatives when they reach the aquatic environment in the context of the COVID-19 pandemic.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicological effects of hydroxychloroquine sulfate and chloroquine diphosphate substances on the early-life stages of fish in the COVID-19 pandemic context.\",\"authors\":\"Isabella Ferreira Silva,&nbsp;Keiza Priscila Enes,&nbsp;Gustavo Machado Rocha,&nbsp;Fernando Pilla Varotti,&nbsp;Leandro Augusto Barbosa,&nbsp;Ralph Gruppi Thomé,&nbsp;Hélio Batista Dos Santos\",\"doi\":\"10.1080/10934529.2023.2238587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydroxychloroquine sulfate (HCQ) and chloroquine diphosphate (CQ) have been used at increased rates to treat COVID-19 but can constitute a potential environmental risk. The objective was to evaluate the toxicity of sublethal concentrations of HCQ and CQ in zebrafish embryos/larvae. The 50% lethal concentrations (LC<sub>50</sub>) of HCQ and CQ at 96 h post-fertilization (hpf) were calculated by testing various concentrations on 2,160 embryos. The LC<sub>50</sub> obtained were 560 and 800 µM for HCQ and CQ, respectively. Next, the embryotoxicity assay was performed, where 1,200 embryos were subjected to sublethal concentrations of HCQ and CQ. The hatching and heart rates were recorded. After euthanasia, photomicrographs of all larvae were taken to measure the total length, pericardial and yolk sac areas. The embryos exposed to sublethal concentrations of HCQ and CQ showed delayed hatching at 72 hpf, as well as an increase in the heart rate, larger pericardial and yolk sac areas, and body malformations at 96 hpf. The findings show that HCQ and CQ are toxic to fish in the early development phases. Understanding the mechanisms of toxicity will help extrapolate the effects of 4-aminoquinoline derivatives when they reach the aquatic environment in the context of the COVID-19 pandemic.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2238587\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2238587","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硫酸羟氯喹(HCQ)和二磷酸氯喹(CQ)用于治疗COVID-19的使用率越来越高,但可能构成潜在的环境风险。目的是评估亚致死浓度的HCQ和CQ对斑马鱼胚胎/幼虫的毒性。通过对2160个胚胎进行不同浓度检测,计算受精后96 h HCQ和CQ的50%致死浓度(LC50)。HCQ和CQ的LC50分别为560µM和800µM。接下来,进行胚胎毒性试验,将1200个胚胎置于亚致死浓度的HCQ和CQ中。孵化率和心率被记录下来。安乐死后,取所有幼虫的显微照片,测量其总长度、心包和卵黄囊面积。暴露于亚致死浓度HCQ和CQ的胚胎在72 hpf时出现孵化延迟,96 hpf时心率增加,心包和卵黄囊面积增大,体畸形。研究结果表明,HCQ和CQ在鱼的早期发育阶段是有毒的。了解毒性机制将有助于推断4-氨基喹啉衍生物在COVID-19大流行背景下到达水生环境时的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toxicological effects of hydroxychloroquine sulfate and chloroquine diphosphate substances on the early-life stages of fish in the COVID-19 pandemic context.

Hydroxychloroquine sulfate (HCQ) and chloroquine diphosphate (CQ) have been used at increased rates to treat COVID-19 but can constitute a potential environmental risk. The objective was to evaluate the toxicity of sublethal concentrations of HCQ and CQ in zebrafish embryos/larvae. The 50% lethal concentrations (LC50) of HCQ and CQ at 96 h post-fertilization (hpf) were calculated by testing various concentrations on 2,160 embryos. The LC50 obtained were 560 and 800 µM for HCQ and CQ, respectively. Next, the embryotoxicity assay was performed, where 1,200 embryos were subjected to sublethal concentrations of HCQ and CQ. The hatching and heart rates were recorded. After euthanasia, photomicrographs of all larvae were taken to measure the total length, pericardial and yolk sac areas. The embryos exposed to sublethal concentrations of HCQ and CQ showed delayed hatching at 72 hpf, as well as an increase in the heart rate, larger pericardial and yolk sac areas, and body malformations at 96 hpf. The findings show that HCQ and CQ are toxic to fish in the early development phases. Understanding the mechanisms of toxicity will help extrapolate the effects of 4-aminoquinoline derivatives when they reach the aquatic environment in the context of the COVID-19 pandemic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信