Allecineia Bispo da Cruz, Francieli Marinho Carneiro, Marta Marques Maia, Ingrid de Siqueira Pereira, Noemi Nosomi Taniwaki, Gislene Mitsue Namiyama, Ricardo Gava, Roberto Mitsuyoshi Hiramoto, Vera Lucia Pereira-Chioccola
{"title":"患有犬内脏利什曼病的狗细胞外囊泡和miR-21-5p的表达增加。","authors":"Allecineia Bispo da Cruz, Francieli Marinho Carneiro, Marta Marques Maia, Ingrid de Siqueira Pereira, Noemi Nosomi Taniwaki, Gislene Mitsue Namiyama, Ricardo Gava, Roberto Mitsuyoshi Hiramoto, Vera Lucia Pereira-Chioccola","doi":"10.1111/pim.13004","DOIUrl":null,"url":null,"abstract":"<p><p>This retrospective cohort study analysed extracellular vesicles (EVs) and microRNAs (miRNAs) excreted in canine sera from dogs with canine visceral leishmaniasis (CanVL). A total of 56 canine sera were divided into Group I (28, from healthy dogs) and Group II (28, from the same dogs, but already with CanVL). CanVL was determined by clinical and laboratory diagnoses. Canine sera were ultra-centrifuged to recover EVs (Can-EVs). Analyses by transmission electron microscopy, nanoparticle tracking analysis (NTA), sodium dodecyl sulfate-poli-acrylammide gel eletroforesis (SDS-PAGE) and, Immunoblot confirmed the presence of (i) microvesicles/exosomes and (ii) the tetraspanins CD63 and CD9. EVs secreted by Leishmania (Leishmania) infantum-EVs were reactive against sera from dogs with CanVL (performed by ELISA and Immunoblot). NTA analyses exhibited that concentrations of Can-EVs from dogs with CanVL (7.78 × 10<sup>10</sup> Can-EVs/mL) were higher (p < .0001) than the non-infected dogs (mean: 1.47 × 10<sup>10</sup> Can-EVs/mL). These results suggested that concentrations of Can-EVs were able to distinguish dogs with CanVL from healthy dogs. The relative expressions of 11 miRNAs species (miR-21-5p, miR-146a-5p, miR-125b-5p, miR-144-3p, miR-194-5p, miR-346, miR-29c-3p, miR-155-5p, miR-24-3p, miR-181a-5p, and miR-9-5p) were estimated in purified miRNAs of 30 canine sera. Dogs with CanVL up-expressed miR-21-5p and miR-146a-5p when compared with healthy dogs. The other miRNA species were poorly or not expressed in canine sera. In conclusion, this study suggests that CanVL induces changes in size and concentration of Can-EVs, as well as, the up-expression of miR-21-5p and miR-146a-5p in infected dogs.</p>","PeriodicalId":19931,"journal":{"name":"Parasite Immunology","volume":"45 9","pages":"e13004"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dogs with canine visceral leishmaniasis have a boost of extracellular vesicles and miR-21-5p up-expression.\",\"authors\":\"Allecineia Bispo da Cruz, Francieli Marinho Carneiro, Marta Marques Maia, Ingrid de Siqueira Pereira, Noemi Nosomi Taniwaki, Gislene Mitsue Namiyama, Ricardo Gava, Roberto Mitsuyoshi Hiramoto, Vera Lucia Pereira-Chioccola\",\"doi\":\"10.1111/pim.13004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This retrospective cohort study analysed extracellular vesicles (EVs) and microRNAs (miRNAs) excreted in canine sera from dogs with canine visceral leishmaniasis (CanVL). A total of 56 canine sera were divided into Group I (28, from healthy dogs) and Group II (28, from the same dogs, but already with CanVL). CanVL was determined by clinical and laboratory diagnoses. Canine sera were ultra-centrifuged to recover EVs (Can-EVs). Analyses by transmission electron microscopy, nanoparticle tracking analysis (NTA), sodium dodecyl sulfate-poli-acrylammide gel eletroforesis (SDS-PAGE) and, Immunoblot confirmed the presence of (i) microvesicles/exosomes and (ii) the tetraspanins CD63 and CD9. EVs secreted by Leishmania (Leishmania) infantum-EVs were reactive against sera from dogs with CanVL (performed by ELISA and Immunoblot). NTA analyses exhibited that concentrations of Can-EVs from dogs with CanVL (7.78 × 10<sup>10</sup> Can-EVs/mL) were higher (p < .0001) than the non-infected dogs (mean: 1.47 × 10<sup>10</sup> Can-EVs/mL). These results suggested that concentrations of Can-EVs were able to distinguish dogs with CanVL from healthy dogs. The relative expressions of 11 miRNAs species (miR-21-5p, miR-146a-5p, miR-125b-5p, miR-144-3p, miR-194-5p, miR-346, miR-29c-3p, miR-155-5p, miR-24-3p, miR-181a-5p, and miR-9-5p) were estimated in purified miRNAs of 30 canine sera. Dogs with CanVL up-expressed miR-21-5p and miR-146a-5p when compared with healthy dogs. The other miRNA species were poorly or not expressed in canine sera. In conclusion, this study suggests that CanVL induces changes in size and concentration of Can-EVs, as well as, the up-expression of miR-21-5p and miR-146a-5p in infected dogs.</p>\",\"PeriodicalId\":19931,\"journal\":{\"name\":\"Parasite Immunology\",\"volume\":\"45 9\",\"pages\":\"e13004\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasite Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/pim.13004\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasite Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/pim.13004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Dogs with canine visceral leishmaniasis have a boost of extracellular vesicles and miR-21-5p up-expression.
This retrospective cohort study analysed extracellular vesicles (EVs) and microRNAs (miRNAs) excreted in canine sera from dogs with canine visceral leishmaniasis (CanVL). A total of 56 canine sera were divided into Group I (28, from healthy dogs) and Group II (28, from the same dogs, but already with CanVL). CanVL was determined by clinical and laboratory diagnoses. Canine sera were ultra-centrifuged to recover EVs (Can-EVs). Analyses by transmission electron microscopy, nanoparticle tracking analysis (NTA), sodium dodecyl sulfate-poli-acrylammide gel eletroforesis (SDS-PAGE) and, Immunoblot confirmed the presence of (i) microvesicles/exosomes and (ii) the tetraspanins CD63 and CD9. EVs secreted by Leishmania (Leishmania) infantum-EVs were reactive against sera from dogs with CanVL (performed by ELISA and Immunoblot). NTA analyses exhibited that concentrations of Can-EVs from dogs with CanVL (7.78 × 1010 Can-EVs/mL) were higher (p < .0001) than the non-infected dogs (mean: 1.47 × 1010 Can-EVs/mL). These results suggested that concentrations of Can-EVs were able to distinguish dogs with CanVL from healthy dogs. The relative expressions of 11 miRNAs species (miR-21-5p, miR-146a-5p, miR-125b-5p, miR-144-3p, miR-194-5p, miR-346, miR-29c-3p, miR-155-5p, miR-24-3p, miR-181a-5p, and miR-9-5p) were estimated in purified miRNAs of 30 canine sera. Dogs with CanVL up-expressed miR-21-5p and miR-146a-5p when compared with healthy dogs. The other miRNA species were poorly or not expressed in canine sera. In conclusion, this study suggests that CanVL induces changes in size and concentration of Can-EVs, as well as, the up-expression of miR-21-5p and miR-146a-5p in infected dogs.
期刊介绍:
Parasite Immunology is an international journal devoted to research on all aspects of parasite immunology in human and animal hosts. Emphasis has been placed on how hosts control parasites, and the immunopathological reactions which take place in the course of parasitic infections. The Journal welcomes original work on all parasites, particularly human parasitology, helminths, protozoa and ectoparasites.