Zhenxing Xie, Tianyu Li, Wei Su, Yanyun Lou, Yongsheng Zhang, Xiyuan Zhou, Zhanfei Li, Xiangjun Bai, Xinghua Liu
{"title":"淀粉样蛋白处理器蛋白的扩展结构域可抑制淀粉样蛋白的裂解,并平衡脑外伤小鼠模型的神经活动","authors":"Zhenxing Xie, Tianyu Li, Wei Su, Yanyun Lou, Yongsheng Zhang, Xiyuan Zhou, Zhanfei Li, Xiangjun Bai, Xinghua Liu","doi":"10.1111/cns.14402","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Mechanisms underlying cognitive dysfunction following traumatic brain injury (TBI) partially due to abnormal amyloid processor protein (APP) cleavage and neural hyperactivity. Binding of the extension domain of APP (ExD17) to the GABAbR1 receptor results in reduced neural activity, which might play a role in the mechanisms of cognitive dysfunction caused by TBI.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Stretch-induced injury was utilized to establish a cell injury model in HT22 cells. The TBI model was created by striking the exposed brain tissue with a free-falling weight. Topical or intraperitoneal administration of ExD17 was performed. Cell viability was assessed through a cell counting kit-8 assay, while intracellular Ca<sup>2+</sup> was measured using Fluo-4. Western blotting was used to investigate the expression of APP amyloidogenic cleavage proteins, GABAbR1, phospholipase C (PLC), PLCB3, and synaptic proteins. ELISA was performed to analyze the levels of Aβ42. Seizures were assessed using electroencephalography (EEG). Behaviors were evaluated through the novel object recognition test, open field test, elevated plus maze test, and nest-building test.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>ExD17 improved cell viability and reduced intracellular calcium in the cell injury model. The treatment also suppressed the increased expression of APP amyloidogenic cleavage proteins and Aβ42 in both cell injury and TBI models. ExD17 treatment reversed the abnormal expression of GABAbR1, GRIA2, p-PLCG1/PLCG1 ratio, and p-PLCB3/PLCB3 ratio. In addition, ExD17 treatment reduced neural activity, seizure events, and their duration in TBI. Intraperitoneal injection of ExD17 improved behavioral outcomes in the TBI mouse model.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>ExD17 treatment results in a reduction of amyloidogenic APP cleavage and neuroexcitotoxicity, ultimately leading to an improvement in the behavioral deficits observed in TBI mice.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"30 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.14402","citationCount":"0","resultStr":"{\"title\":\"Extension domain of amyloid processor protein inhibits amyloidogenic cleavage and balances neural activity in a traumatic brain injury mouse model\",\"authors\":\"Zhenxing Xie, Tianyu Li, Wei Su, Yanyun Lou, Yongsheng Zhang, Xiyuan Zhou, Zhanfei Li, Xiangjun Bai, Xinghua Liu\",\"doi\":\"10.1111/cns.14402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Mechanisms underlying cognitive dysfunction following traumatic brain injury (TBI) partially due to abnormal amyloid processor protein (APP) cleavage and neural hyperactivity. Binding of the extension domain of APP (ExD17) to the GABAbR1 receptor results in reduced neural activity, which might play a role in the mechanisms of cognitive dysfunction caused by TBI.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Stretch-induced injury was utilized to establish a cell injury model in HT22 cells. The TBI model was created by striking the exposed brain tissue with a free-falling weight. Topical or intraperitoneal administration of ExD17 was performed. Cell viability was assessed through a cell counting kit-8 assay, while intracellular Ca<sup>2+</sup> was measured using Fluo-4. Western blotting was used to investigate the expression of APP amyloidogenic cleavage proteins, GABAbR1, phospholipase C (PLC), PLCB3, and synaptic proteins. ELISA was performed to analyze the levels of Aβ42. Seizures were assessed using electroencephalography (EEG). Behaviors were evaluated through the novel object recognition test, open field test, elevated plus maze test, and nest-building test.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>ExD17 improved cell viability and reduced intracellular calcium in the cell injury model. The treatment also suppressed the increased expression of APP amyloidogenic cleavage proteins and Aβ42 in both cell injury and TBI models. ExD17 treatment reversed the abnormal expression of GABAbR1, GRIA2, p-PLCG1/PLCG1 ratio, and p-PLCB3/PLCB3 ratio. In addition, ExD17 treatment reduced neural activity, seizure events, and their duration in TBI. Intraperitoneal injection of ExD17 improved behavioral outcomes in the TBI mouse model.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>ExD17 treatment results in a reduction of amyloidogenic APP cleavage and neuroexcitotoxicity, ultimately leading to an improvement in the behavioral deficits observed in TBI mice.</p>\\n </section>\\n </div>\",\"PeriodicalId\":154,\"journal\":{\"name\":\"CNS Neuroscience & Therapeutics\",\"volume\":\"30 2\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.14402\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS Neuroscience & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cns.14402\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.14402","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Extension domain of amyloid processor protein inhibits amyloidogenic cleavage and balances neural activity in a traumatic brain injury mouse model
Background
Mechanisms underlying cognitive dysfunction following traumatic brain injury (TBI) partially due to abnormal amyloid processor protein (APP) cleavage and neural hyperactivity. Binding of the extension domain of APP (ExD17) to the GABAbR1 receptor results in reduced neural activity, which might play a role in the mechanisms of cognitive dysfunction caused by TBI.
Methods
Stretch-induced injury was utilized to establish a cell injury model in HT22 cells. The TBI model was created by striking the exposed brain tissue with a free-falling weight. Topical or intraperitoneal administration of ExD17 was performed. Cell viability was assessed through a cell counting kit-8 assay, while intracellular Ca2+ was measured using Fluo-4. Western blotting was used to investigate the expression of APP amyloidogenic cleavage proteins, GABAbR1, phospholipase C (PLC), PLCB3, and synaptic proteins. ELISA was performed to analyze the levels of Aβ42. Seizures were assessed using electroencephalography (EEG). Behaviors were evaluated through the novel object recognition test, open field test, elevated plus maze test, and nest-building test.
Results
ExD17 improved cell viability and reduced intracellular calcium in the cell injury model. The treatment also suppressed the increased expression of APP amyloidogenic cleavage proteins and Aβ42 in both cell injury and TBI models. ExD17 treatment reversed the abnormal expression of GABAbR1, GRIA2, p-PLCG1/PLCG1 ratio, and p-PLCB3/PLCB3 ratio. In addition, ExD17 treatment reduced neural activity, seizure events, and their duration in TBI. Intraperitoneal injection of ExD17 improved behavioral outcomes in the TBI mouse model.
Conclusions
ExD17 treatment results in a reduction of amyloidogenic APP cleavage and neuroexcitotoxicity, ultimately leading to an improvement in the behavioral deficits observed in TBI mice.
期刊介绍:
CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.