Qi Qian, Danh V Nguyen, Donatello Telesca, Esra Kurum, Connie M Rhee, Sudipto Banerjee, Yihao Li, Damla Senturk
{"title":"透析人群住院率和死亡率建模的多变量时空功能主成分分析","authors":"Qi Qian, Danh V Nguyen, Donatello Telesca, Esra Kurum, Connie M Rhee, Sudipto Banerjee, Yihao Li, Damla Senturk","doi":"10.1093/biostatistics/kxad013","DOIUrl":null,"url":null,"abstract":"<p><p>Dialysis patients experience frequent hospitalizations and a higher mortality rate compared to other Medicare populations, in whom hospitalizations are a major contributor to morbidity, mortality, and healthcare costs. Patients also typically remain on dialysis for the duration of their lives or until kidney transplantation. Hence, there is growing interest in studying the spatiotemporal trends in the correlated outcomes of hospitalization and mortality among dialysis patients as a function of time starting from transition to dialysis across the United States Utilizing national data from the United States Renal Data System (USRDS), we propose a novel multivariate spatiotemporal functional principal component analysis model to study the joint spatiotemporal patterns of hospitalization and mortality rates among dialysis patients. The proposal is based on a multivariate Karhunen-Loéve expansion that describes leading directions of variation across time and induces spatial correlations among region-specific scores. An efficient estimation procedure is proposed using only univariate principal components decompositions and a Markov Chain Monte Carlo framework for targeting the spatial correlations. The finite sample performance of the proposed method is studied through simulations. Novel applications to the USRDS data highlight hot spots across the United States with higher hospitalization and/or mortality rates and time periods of elevated risk.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358256/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multivariate spatiotemporal functional principal component analysis for modeling hospitalization and mortality rates in the dialysis population.\",\"authors\":\"Qi Qian, Danh V Nguyen, Donatello Telesca, Esra Kurum, Connie M Rhee, Sudipto Banerjee, Yihao Li, Damla Senturk\",\"doi\":\"10.1093/biostatistics/kxad013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dialysis patients experience frequent hospitalizations and a higher mortality rate compared to other Medicare populations, in whom hospitalizations are a major contributor to morbidity, mortality, and healthcare costs. Patients also typically remain on dialysis for the duration of their lives or until kidney transplantation. Hence, there is growing interest in studying the spatiotemporal trends in the correlated outcomes of hospitalization and mortality among dialysis patients as a function of time starting from transition to dialysis across the United States Utilizing national data from the United States Renal Data System (USRDS), we propose a novel multivariate spatiotemporal functional principal component analysis model to study the joint spatiotemporal patterns of hospitalization and mortality rates among dialysis patients. The proposal is based on a multivariate Karhunen-Loéve expansion that describes leading directions of variation across time and induces spatial correlations among region-specific scores. An efficient estimation procedure is proposed using only univariate principal components decompositions and a Markov Chain Monte Carlo framework for targeting the spatial correlations. The finite sample performance of the proposed method is studied through simulations. Novel applications to the USRDS data highlight hot spots across the United States with higher hospitalization and/or mortality rates and time periods of elevated risk.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358256/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxad013\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multivariate spatiotemporal functional principal component analysis for modeling hospitalization and mortality rates in the dialysis population.
Dialysis patients experience frequent hospitalizations and a higher mortality rate compared to other Medicare populations, in whom hospitalizations are a major contributor to morbidity, mortality, and healthcare costs. Patients also typically remain on dialysis for the duration of their lives or until kidney transplantation. Hence, there is growing interest in studying the spatiotemporal trends in the correlated outcomes of hospitalization and mortality among dialysis patients as a function of time starting from transition to dialysis across the United States Utilizing national data from the United States Renal Data System (USRDS), we propose a novel multivariate spatiotemporal functional principal component analysis model to study the joint spatiotemporal patterns of hospitalization and mortality rates among dialysis patients. The proposal is based on a multivariate Karhunen-Loéve expansion that describes leading directions of variation across time and induces spatial correlations among region-specific scores. An efficient estimation procedure is proposed using only univariate principal components decompositions and a Markov Chain Monte Carlo framework for targeting the spatial correlations. The finite sample performance of the proposed method is studied through simulations. Novel applications to the USRDS data highlight hot spots across the United States with higher hospitalization and/or mortality rates and time periods of elevated risk.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.