Z. Fabová , Z. Kislíková , B. Loncová , M. Bauer , A.H. Harrath , A.V. Sirotkin
{"title":"微小RNA miR-152可以支持卵巢颗粒细胞功能并改变芹菜素的作用","authors":"Z. Fabová , Z. Kislíková , B. Loncová , M. Bauer , A.H. Harrath , A.V. Sirotkin","doi":"10.1016/j.domaniend.2023.106805","DOIUrl":null,"url":null,"abstract":"<div><p>The study aimed to evaluate the involvement of apigenin, microRNA (miR)-152, and their interrelationships in the control of basic ovarian granulosa cell functions. The effects of apigenin (0, 10, and 100 µg/mL), miR-152 analogues or miR-152 inhibitor, and their combinations with apigenin on porcine granulosa cells were examined. Expression levels of miR-152, viability, proliferation, apoptosis, steroid hormones, IGF-I, oxytocin, and prostaglandin E2 release were analyzed. Apigenin increased the expression of miR-152, cell proliferation, and estradiol release and reduced apoptosis, progesterone, and IGF-I output. MicroRNA-152 analogues promoted cell viability and proliferation, as well as the release of progesterone, IGF-I, oxytocin, and prostaglandin E2; however, it inhibited apoptosis and estradiol output. miR-152 inhibitor had the opposite effect. Moreover, miR-152 analogues suppressed the effect of apigenin on cell apoptosis and estradiol release. These observations 1) confirm the involvement of apigenin in the control of basic ovarian cell functions; 2) are the first demonstration of importance of miR-152 in the control of these functions; 3) show the ability of apigenin to promote miR-152 expression and the ability of miR-152 to modify apigenin effects on ovarian cells.</p></div>","PeriodicalId":11356,"journal":{"name":"Domestic animal endocrinology","volume":"84 ","pages":"Article 106805"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MicroRNA miR-152 can support ovarian granulosa cell functions and modify apigenin actions\",\"authors\":\"Z. Fabová , Z. Kislíková , B. Loncová , M. Bauer , A.H. Harrath , A.V. Sirotkin\",\"doi\":\"10.1016/j.domaniend.2023.106805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study aimed to evaluate the involvement of apigenin, microRNA (miR)-152, and their interrelationships in the control of basic ovarian granulosa cell functions. The effects of apigenin (0, 10, and 100 µg/mL), miR-152 analogues or miR-152 inhibitor, and their combinations with apigenin on porcine granulosa cells were examined. Expression levels of miR-152, viability, proliferation, apoptosis, steroid hormones, IGF-I, oxytocin, and prostaglandin E2 release were analyzed. Apigenin increased the expression of miR-152, cell proliferation, and estradiol release and reduced apoptosis, progesterone, and IGF-I output. MicroRNA-152 analogues promoted cell viability and proliferation, as well as the release of progesterone, IGF-I, oxytocin, and prostaglandin E2; however, it inhibited apoptosis and estradiol output. miR-152 inhibitor had the opposite effect. Moreover, miR-152 analogues suppressed the effect of apigenin on cell apoptosis and estradiol release. These observations 1) confirm the involvement of apigenin in the control of basic ovarian cell functions; 2) are the first demonstration of importance of miR-152 in the control of these functions; 3) show the ability of apigenin to promote miR-152 expression and the ability of miR-152 to modify apigenin effects on ovarian cells.</p></div>\",\"PeriodicalId\":11356,\"journal\":{\"name\":\"Domestic animal endocrinology\",\"volume\":\"84 \",\"pages\":\"Article 106805\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Domestic animal endocrinology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0739724023000218\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Domestic animal endocrinology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0739724023000218","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
MicroRNA miR-152 can support ovarian granulosa cell functions and modify apigenin actions
The study aimed to evaluate the involvement of apigenin, microRNA (miR)-152, and their interrelationships in the control of basic ovarian granulosa cell functions. The effects of apigenin (0, 10, and 100 µg/mL), miR-152 analogues or miR-152 inhibitor, and their combinations with apigenin on porcine granulosa cells were examined. Expression levels of miR-152, viability, proliferation, apoptosis, steroid hormones, IGF-I, oxytocin, and prostaglandin E2 release were analyzed. Apigenin increased the expression of miR-152, cell proliferation, and estradiol release and reduced apoptosis, progesterone, and IGF-I output. MicroRNA-152 analogues promoted cell viability and proliferation, as well as the release of progesterone, IGF-I, oxytocin, and prostaglandin E2; however, it inhibited apoptosis and estradiol output. miR-152 inhibitor had the opposite effect. Moreover, miR-152 analogues suppressed the effect of apigenin on cell apoptosis and estradiol release. These observations 1) confirm the involvement of apigenin in the control of basic ovarian cell functions; 2) are the first demonstration of importance of miR-152 in the control of these functions; 3) show the ability of apigenin to promote miR-152 expression and the ability of miR-152 to modify apigenin effects on ovarian cells.
期刊介绍:
Domestic Animal Endocrinology publishes scientific papers dealing with the study of the endocrine physiology of domestic animal species. Those manuscripts utilizing other species as models for clinical or production problems associated with domestic animals are also welcome.
Topics covered include:
Classical and reproductive endocrinology-
Clinical and applied endocrinology-
Regulation of hormone secretion-
Hormone action-
Molecular biology-
Cytokines-
Growth factors