{"title":"受单图像超分辨率启发的正弦图插值。","authors":"Carolyn Christiansen, Gengsheng L Zeng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Computed tomography is a medical imaging procedure used to estimate the interior of a patient or an object. Radiation scans are taken at regularly spaced angles around the object, forming a sinogram. This sinogram is then reconstructed into an image representing the contents of the object. This results in a fair amount of radiation exposure for the patient, which increases the risk of cancer. Less radiation and fewer views, however, leads to inferior image reconstruction. To solve this sparse-view problem, a deep-learning model is created that takes as input a sparse sinogram and outputs a sinogram with interpolated data for additional views. The architecture of this model is based on the super-resolution convolutional neural network. The reconstruction of model-interpolated sinograms has less mean-squared error than the reconstruction of the sparse sinogram. It also has less mean-squared error than a reconstruction of a sinogram interpolated using the popular bilinear image-resizing algorithm. This model can be easily adapted to different image sizes, and its simplicity translates into efficiency in both time and memory requirements.</p>","PeriodicalId":73624,"journal":{"name":"Journal of biotechnology and its applications","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270693/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sinogram Interpolation Inspired by Single-Image Super Resolution.\",\"authors\":\"Carolyn Christiansen, Gengsheng L Zeng\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computed tomography is a medical imaging procedure used to estimate the interior of a patient or an object. Radiation scans are taken at regularly spaced angles around the object, forming a sinogram. This sinogram is then reconstructed into an image representing the contents of the object. This results in a fair amount of radiation exposure for the patient, which increases the risk of cancer. Less radiation and fewer views, however, leads to inferior image reconstruction. To solve this sparse-view problem, a deep-learning model is created that takes as input a sparse sinogram and outputs a sinogram with interpolated data for additional views. The architecture of this model is based on the super-resolution convolutional neural network. The reconstruction of model-interpolated sinograms has less mean-squared error than the reconstruction of the sparse sinogram. It also has less mean-squared error than a reconstruction of a sinogram interpolated using the popular bilinear image-resizing algorithm. This model can be easily adapted to different image sizes, and its simplicity translates into efficiency in both time and memory requirements.</p>\",\"PeriodicalId\":73624,\"journal\":{\"name\":\"Journal of biotechnology and its applications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10270693/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biotechnology and its applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology and its applications","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sinogram Interpolation Inspired by Single-Image Super Resolution.
Computed tomography is a medical imaging procedure used to estimate the interior of a patient or an object. Radiation scans are taken at regularly spaced angles around the object, forming a sinogram. This sinogram is then reconstructed into an image representing the contents of the object. This results in a fair amount of radiation exposure for the patient, which increases the risk of cancer. Less radiation and fewer views, however, leads to inferior image reconstruction. To solve this sparse-view problem, a deep-learning model is created that takes as input a sparse sinogram and outputs a sinogram with interpolated data for additional views. The architecture of this model is based on the super-resolution convolutional neural network. The reconstruction of model-interpolated sinograms has less mean-squared error than the reconstruction of the sparse sinogram. It also has less mean-squared error than a reconstruction of a sinogram interpolated using the popular bilinear image-resizing algorithm. This model can be easily adapted to different image sizes, and its simplicity translates into efficiency in both time and memory requirements.