Andrea Di Credico, Giulia Gaggi, Pascal Izzicupo, Daniela Vitucci, Pasqualina Buono, Angela Di Baldassarre, Barbara Ghinassi
{"title":"甜菜碱治疗可通过恢复培养肌管的总蛋白合成率和形态来防止 TNF-α 介导的肌肉萎缩","authors":"Andrea Di Credico, Giulia Gaggi, Pascal Izzicupo, Daniela Vitucci, Pasqualina Buono, Angela Di Baldassarre, Barbara Ghinassi","doi":"10.1369/00221554231165326","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle atrophy is represented by a dramatic decrease in muscle mass, and it is related to a lower life expectancy. Among the different causes, chronic inflammation and cancer promote protein loss through the effect of inflammatory cytokines, leading to muscle shrinkage. Thus, the availability of safe methods to counteract inflammation-derived atrophy is of high interest. Betaine is a methyl derivate of glycine and it is an important methyl group donor in transmethylation. Recently, some studies found that betaine could promote muscle growth, and it is also involved in anti-inflammatory mechanisms. Our hypothesis was that betaine would be able to prevent tumor necrosis factor-α (TNF-α)-mediated muscle atrophy in vitro. We treated differentiated C2C12 myotubes for 72 hr with either TNF-α, betaine, or a combination of them. After the treatment, we analyzed total protein synthesis, gene expression, and myotube morphology. Betaine treatment blunted the decrease in muscle protein synthesis rate exerted by TNF-α, and upregulated Mhy1 gene expression in both control and myotube treated with TNF-α. In addition, morphological analysis revealed that myotubes treated with both betaine and TNF-α did not show morphological features of TNF-α-mediated atrophy. We demonstrated that in vitro betaine supplementation counteracts the muscle atrophy led by inflammatory cytokines.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149894/pdf/","citationCount":"0","resultStr":"{\"title\":\"Betaine Treatment Prevents TNF-α-Mediated Muscle Atrophy by Restoring Total Protein Synthesis Rate and Morphology in Cultured Myotubes.\",\"authors\":\"Andrea Di Credico, Giulia Gaggi, Pascal Izzicupo, Daniela Vitucci, Pasqualina Buono, Angela Di Baldassarre, Barbara Ghinassi\",\"doi\":\"10.1369/00221554231165326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle atrophy is represented by a dramatic decrease in muscle mass, and it is related to a lower life expectancy. Among the different causes, chronic inflammation and cancer promote protein loss through the effect of inflammatory cytokines, leading to muscle shrinkage. Thus, the availability of safe methods to counteract inflammation-derived atrophy is of high interest. Betaine is a methyl derivate of glycine and it is an important methyl group donor in transmethylation. Recently, some studies found that betaine could promote muscle growth, and it is also involved in anti-inflammatory mechanisms. Our hypothesis was that betaine would be able to prevent tumor necrosis factor-α (TNF-α)-mediated muscle atrophy in vitro. We treated differentiated C2C12 myotubes for 72 hr with either TNF-α, betaine, or a combination of them. After the treatment, we analyzed total protein synthesis, gene expression, and myotube morphology. Betaine treatment blunted the decrease in muscle protein synthesis rate exerted by TNF-α, and upregulated Mhy1 gene expression in both control and myotube treated with TNF-α. In addition, morphological analysis revealed that myotubes treated with both betaine and TNF-α did not show morphological features of TNF-α-mediated atrophy. We demonstrated that in vitro betaine supplementation counteracts the muscle atrophy led by inflammatory cytokines.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149894/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1369/00221554231165326\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1369/00221554231165326","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Betaine Treatment Prevents TNF-α-Mediated Muscle Atrophy by Restoring Total Protein Synthesis Rate and Morphology in Cultured Myotubes.
Skeletal muscle atrophy is represented by a dramatic decrease in muscle mass, and it is related to a lower life expectancy. Among the different causes, chronic inflammation and cancer promote protein loss through the effect of inflammatory cytokines, leading to muscle shrinkage. Thus, the availability of safe methods to counteract inflammation-derived atrophy is of high interest. Betaine is a methyl derivate of glycine and it is an important methyl group donor in transmethylation. Recently, some studies found that betaine could promote muscle growth, and it is also involved in anti-inflammatory mechanisms. Our hypothesis was that betaine would be able to prevent tumor necrosis factor-α (TNF-α)-mediated muscle atrophy in vitro. We treated differentiated C2C12 myotubes for 72 hr with either TNF-α, betaine, or a combination of them. After the treatment, we analyzed total protein synthesis, gene expression, and myotube morphology. Betaine treatment blunted the decrease in muscle protein synthesis rate exerted by TNF-α, and upregulated Mhy1 gene expression in both control and myotube treated with TNF-α. In addition, morphological analysis revealed that myotubes treated with both betaine and TNF-α did not show morphological features of TNF-α-mediated atrophy. We demonstrated that in vitro betaine supplementation counteracts the muscle atrophy led by inflammatory cytokines.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.