Xiao Liu , Lili Zhang , Yueying Yang , Weiwei Yin , Yunhu Liu , Chunyi Luo , Ruizhe Zhang , Zhiguo Long , Yanyan Jiang , Bing Wang
{"title":"cd71介导的脂质体砷镍复合物联合全反式维黄酸治疗急性早幼粒细胞白血病的疗效","authors":"Xiao Liu , Lili Zhang , Yueying Yang , Weiwei Yin , Yunhu Liu , Chunyi Luo , Ruizhe Zhang , Zhiguo Long , Yanyan Jiang , Bing Wang","doi":"10.1016/j.ajps.2023.100826","DOIUrl":null,"url":null,"abstract":"<div><p>Clinically, arsenic trioxide (ATO) was applied to the treatment of acute promyelocytic leukemia (APL) as a reliable and effective frontline drug. However, the administration regimen of As<sup>Ⅲ</sup> was limited due to its fast clearance, short therapeutic window and toxicity as well. Based on CD71 overexpressed on APL cells, in present study, a transferrin (Tf)-modified liposome (LP) was established firstly to encapsulate As<sup>Ⅲ</sup> in arsenic-nickel complex by nickel acetate gradient method. The As<sup>Ⅲ</sup>-loaded liposomes (AsLP) exhibited the feature of acid-sensitive release <em>in vitro</em>. Tf-modified AsLP (Tf-AsLP) were specifically taken up by APL cells and the acidic intracellular environment triggered liposome to release As<sup>Ⅲ</sup> which stimulated reactive oxygen species level and caspase-3 activity. Tf-AsLP prolonged half-life of As<sup>Ⅲ</sup> in blood circulation, lowered systemic toxicity, and promoted apoptosis and induced cell differentiation at lesion site <em>in vivo</em>. Considering that ATO combined with RA is usually applied as the first choice in clinic for APL treatment to improve the therapeutic effect, accordingly, a Tf-modified RA liposome (Tf-RALP) was designed to reduce the severe side effects of free RA and assist Tf-AsLP for better efficacy. As expected, the tumor inhibition rate of Tf-AsLP was improved significantly with the combination of Tf-RALP on subcutaneous tumor model. Furthermore, APL orthotopic NOD/SCID mice model was established by <sup>60</sup>CO irradiation and HL-60 cells intravenously injection. The effect of co-administration (Tf-AsLP + Tf-RALP) was also confirmed to conspicuous decrease the number of leukemia cells in the circulatory system and prolong the survival time of APL mice by promoting the APL cells’ apoptosis and differentiation in peripheral blood and bone marrow. Collectively, Tf-modified acid-sensitive AsLP could greatly reduce the systemic toxicity of free drug. Moreover, Tf-AsLP combined with Tf-RALP could achieve better efficacy. Thus, transferrin-modified As<sup>Ⅲ</sup> liposome would be a novel clinical strategy to improve patient compliance, with promising translation prospects.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/5e/main.PMC10423880.pdf","citationCount":"0","resultStr":"{\"title\":\"CD71-mediated liposomal arsenic-nickel complex combined with all-trans retinoic acid for the efficacy of acute promyelocytic leukemia\",\"authors\":\"Xiao Liu , Lili Zhang , Yueying Yang , Weiwei Yin , Yunhu Liu , Chunyi Luo , Ruizhe Zhang , Zhiguo Long , Yanyan Jiang , Bing Wang\",\"doi\":\"10.1016/j.ajps.2023.100826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Clinically, arsenic trioxide (ATO) was applied to the treatment of acute promyelocytic leukemia (APL) as a reliable and effective frontline drug. However, the administration regimen of As<sup>Ⅲ</sup> was limited due to its fast clearance, short therapeutic window and toxicity as well. Based on CD71 overexpressed on APL cells, in present study, a transferrin (Tf)-modified liposome (LP) was established firstly to encapsulate As<sup>Ⅲ</sup> in arsenic-nickel complex by nickel acetate gradient method. The As<sup>Ⅲ</sup>-loaded liposomes (AsLP) exhibited the feature of acid-sensitive release <em>in vitro</em>. Tf-modified AsLP (Tf-AsLP) were specifically taken up by APL cells and the acidic intracellular environment triggered liposome to release As<sup>Ⅲ</sup> which stimulated reactive oxygen species level and caspase-3 activity. Tf-AsLP prolonged half-life of As<sup>Ⅲ</sup> in blood circulation, lowered systemic toxicity, and promoted apoptosis and induced cell differentiation at lesion site <em>in vivo</em>. Considering that ATO combined with RA is usually applied as the first choice in clinic for APL treatment to improve the therapeutic effect, accordingly, a Tf-modified RA liposome (Tf-RALP) was designed to reduce the severe side effects of free RA and assist Tf-AsLP for better efficacy. As expected, the tumor inhibition rate of Tf-AsLP was improved significantly with the combination of Tf-RALP on subcutaneous tumor model. Furthermore, APL orthotopic NOD/SCID mice model was established by <sup>60</sup>CO irradiation and HL-60 cells intravenously injection. The effect of co-administration (Tf-AsLP + Tf-RALP) was also confirmed to conspicuous decrease the number of leukemia cells in the circulatory system and prolong the survival time of APL mice by promoting the APL cells’ apoptosis and differentiation in peripheral blood and bone marrow. Collectively, Tf-modified acid-sensitive AsLP could greatly reduce the systemic toxicity of free drug. Moreover, Tf-AsLP combined with Tf-RALP could achieve better efficacy. Thus, transferrin-modified As<sup>Ⅲ</sup> liposome would be a novel clinical strategy to improve patient compliance, with promising translation prospects.</p></div>\",\"PeriodicalId\":8539,\"journal\":{\"name\":\"Asian Journal of Pharmaceutical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/5e/main.PMC10423880.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1818087623000533\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087623000533","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
CD71-mediated liposomal arsenic-nickel complex combined with all-trans retinoic acid for the efficacy of acute promyelocytic leukemia
Clinically, arsenic trioxide (ATO) was applied to the treatment of acute promyelocytic leukemia (APL) as a reliable and effective frontline drug. However, the administration regimen of AsⅢ was limited due to its fast clearance, short therapeutic window and toxicity as well. Based on CD71 overexpressed on APL cells, in present study, a transferrin (Tf)-modified liposome (LP) was established firstly to encapsulate AsⅢ in arsenic-nickel complex by nickel acetate gradient method. The AsⅢ-loaded liposomes (AsLP) exhibited the feature of acid-sensitive release in vitro. Tf-modified AsLP (Tf-AsLP) were specifically taken up by APL cells and the acidic intracellular environment triggered liposome to release AsⅢ which stimulated reactive oxygen species level and caspase-3 activity. Tf-AsLP prolonged half-life of AsⅢ in blood circulation, lowered systemic toxicity, and promoted apoptosis and induced cell differentiation at lesion site in vivo. Considering that ATO combined with RA is usually applied as the first choice in clinic for APL treatment to improve the therapeutic effect, accordingly, a Tf-modified RA liposome (Tf-RALP) was designed to reduce the severe side effects of free RA and assist Tf-AsLP for better efficacy. As expected, the tumor inhibition rate of Tf-AsLP was improved significantly with the combination of Tf-RALP on subcutaneous tumor model. Furthermore, APL orthotopic NOD/SCID mice model was established by 60CO irradiation and HL-60 cells intravenously injection. The effect of co-administration (Tf-AsLP + Tf-RALP) was also confirmed to conspicuous decrease the number of leukemia cells in the circulatory system and prolong the survival time of APL mice by promoting the APL cells’ apoptosis and differentiation in peripheral blood and bone marrow. Collectively, Tf-modified acid-sensitive AsLP could greatly reduce the systemic toxicity of free drug. Moreover, Tf-AsLP combined with Tf-RALP could achieve better efficacy. Thus, transferrin-modified AsⅢ liposome would be a novel clinical strategy to improve patient compliance, with promising translation prospects.
期刊介绍:
The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.