Changrui Xiao, Thomas Cassini, Daniel Benavides, Anusha Ebrahim, David Adams, Camilo Toro
{"title":"异位脑内钙化的基因组诊断。","authors":"Changrui Xiao, Thomas Cassini, Daniel Benavides, Anusha Ebrahim, David Adams, Camilo Toro","doi":"10.1212/NXG.0000000000200083","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Ectopic intracerebral calcifications (EICs) in the basal ganglia, thalamus, cerebellum, or white matter are seen in a variety of disease states or may be found incidentally on brain imaging. The clinical significance and proportion of cases attributable to an underlying genetic cause is unknown.</p><p><strong>Methods: </strong>This retrospective cohort study details the clinical, imaging, and genomic findings of 44 patients with EICs who had no established diagnosis despite extensive medical workup.</p><p><strong>Results: </strong>In total, 15 of 44 patients received a diagnosis through genomic testing explaining their calcifications, and 2 more received a diagnosis that has not been previously associated with EICs. Six of the 15 were found to have one of the 4 genes (<i>PDGFB</i>, <i>PDGFRB</i>, <i>SLC20A2</i>, and <i>XPR1</i>) conventionally associated with the phenotypic term \"idiopathic basal ganglia calcifications.\"</p><p><strong>Discussion: </strong>These findings support the use of genomic testing for symptomatic patients with EICs.</p>","PeriodicalId":48613,"journal":{"name":"Neurology-Genetics","volume":"9 5","pages":"e200083"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399077/pdf/NXG-2023-000175.pdf","citationCount":"0","resultStr":"{\"title\":\"Genomic Diagnoses for Ectopic Intracerebral Calcifications.\",\"authors\":\"Changrui Xiao, Thomas Cassini, Daniel Benavides, Anusha Ebrahim, David Adams, Camilo Toro\",\"doi\":\"10.1212/NXG.0000000000200083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objectives: </strong>Ectopic intracerebral calcifications (EICs) in the basal ganglia, thalamus, cerebellum, or white matter are seen in a variety of disease states or may be found incidentally on brain imaging. The clinical significance and proportion of cases attributable to an underlying genetic cause is unknown.</p><p><strong>Methods: </strong>This retrospective cohort study details the clinical, imaging, and genomic findings of 44 patients with EICs who had no established diagnosis despite extensive medical workup.</p><p><strong>Results: </strong>In total, 15 of 44 patients received a diagnosis through genomic testing explaining their calcifications, and 2 more received a diagnosis that has not been previously associated with EICs. Six of the 15 were found to have one of the 4 genes (<i>PDGFB</i>, <i>PDGFRB</i>, <i>SLC20A2</i>, and <i>XPR1</i>) conventionally associated with the phenotypic term \\\"idiopathic basal ganglia calcifications.\\\"</p><p><strong>Discussion: </strong>These findings support the use of genomic testing for symptomatic patients with EICs.</p>\",\"PeriodicalId\":48613,\"journal\":{\"name\":\"Neurology-Genetics\",\"volume\":\"9 5\",\"pages\":\"e200083\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399077/pdf/NXG-2023-000175.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology-Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1212/NXG.0000000000200083\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology-Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/NXG.0000000000200083","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Genomic Diagnoses for Ectopic Intracerebral Calcifications.
Background and objectives: Ectopic intracerebral calcifications (EICs) in the basal ganglia, thalamus, cerebellum, or white matter are seen in a variety of disease states or may be found incidentally on brain imaging. The clinical significance and proportion of cases attributable to an underlying genetic cause is unknown.
Methods: This retrospective cohort study details the clinical, imaging, and genomic findings of 44 patients with EICs who had no established diagnosis despite extensive medical workup.
Results: In total, 15 of 44 patients received a diagnosis through genomic testing explaining their calcifications, and 2 more received a diagnosis that has not been previously associated with EICs. Six of the 15 were found to have one of the 4 genes (PDGFB, PDGFRB, SLC20A2, and XPR1) conventionally associated with the phenotypic term "idiopathic basal ganglia calcifications."
Discussion: These findings support the use of genomic testing for symptomatic patients with EICs.
期刊介绍:
Neurology: Genetics is an online open access journal publishing peer-reviewed reports in the field of neurogenetics. Original articles in all areas of neurogenetics will be published including rare and common genetic variation, genotype-phenotype correlations, outlier phenotypes as a result of mutations in known disease-genes, and genetic variations with a putative link to diseases. This will include studies reporting on genetic disease risk and pharmacogenomics. In addition, Neurology: Genetics will publish results of gene-based clinical trials (viral, ASO, etc.). Genetically engineered model systems are not a primary focus of Neurology: Genetics, but studies using model systems for treatment trials are welcome, including well-powered studies reporting negative results.