Kenton M Sanders, Bernard T Drumm, Caroline A Cobine, Salah A Baker
{"title":"间质细胞中的Ca2+动力学:胃肠道运动模式的基本机制。","authors":"Kenton M Sanders, Bernard T Drumm, Caroline A Cobine, Salah A Baker","doi":"10.1152/physrev.00036.2022","DOIUrl":null,"url":null,"abstract":"<p><p>The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α<sup>+</sup> cells. Together these cells form the SIP syncytium. ICC and PDGFRα<sup>+</sup> cells express signature Ca<sup>2+</sup>-dependent conductances: ICC express Ca<sup>2+</sup>-activated Cl<sup>-</sup> channels, encoded by <i>Ano1</i>, that generate inward current, and PDGFRα<sup>+</sup> cells express Ca<sup>2+</sup>-activated K<sup>+</sup> channels, encoded by <i>Kcnn3</i>, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca<sup>2+</sup> release from the endoplasmic reticulum. The resulting Ca<sup>2+</sup> transients occur spontaneously in a stochastic manner. Ca<sup>2+</sup> transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca<sup>2+</sup> transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca<sup>2+</sup> influx, which initiates a cluster of Ca<sup>2+</sup> transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca<sup>2+</sup> handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term \"myogenic\" should be replaced by the term \"SIPgenic,\" as this review discusses.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":" ","pages":"329-398"},"PeriodicalIF":29.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281822/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ca<sup>2+</sup> dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract.\",\"authors\":\"Kenton M Sanders, Bernard T Drumm, Caroline A Cobine, Salah A Baker\",\"doi\":\"10.1152/physrev.00036.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α<sup>+</sup> cells. Together these cells form the SIP syncytium. ICC and PDGFRα<sup>+</sup> cells express signature Ca<sup>2+</sup>-dependent conductances: ICC express Ca<sup>2+</sup>-activated Cl<sup>-</sup> channels, encoded by <i>Ano1</i>, that generate inward current, and PDGFRα<sup>+</sup> cells express Ca<sup>2+</sup>-activated K<sup>+</sup> channels, encoded by <i>Kcnn3</i>, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca<sup>2+</sup> release from the endoplasmic reticulum. The resulting Ca<sup>2+</sup> transients occur spontaneously in a stochastic manner. Ca<sup>2+</sup> transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca<sup>2+</sup> transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca<sup>2+</sup> influx, which initiates a cluster of Ca<sup>2+</sup> transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca<sup>2+</sup> handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term \\\"myogenic\\\" should be replaced by the term \\\"SIPgenic,\\\" as this review discusses.</p>\",\"PeriodicalId\":20193,\"journal\":{\"name\":\"Physiological reviews\",\"volume\":\" \",\"pages\":\"329-398\"},\"PeriodicalIF\":29.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281822/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/physrev.00036.2022\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00036.2022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Ca2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract.
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
期刊介绍:
Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.