Mohamed Ateia*, Dora Chiang, Michaela Cashman and Carolyn Acheson,
{"title":"总可氧化前体(TOP)测定─PFAS现场调查和补救的最佳实践、能力和限制","authors":"Mohamed Ateia*, Dora Chiang, Michaela Cashman and Carolyn Acheson, ","doi":"10.1021/acs.estlett.3c00061","DOIUrl":null,"url":null,"abstract":"The comprehensive characterization of per- and polyfluoroalkyl substances (PFASs) is necessary for the effective assessment and management of risk at contaminated sites. While current analytical methods are capable of quantitatively measuring a number of specific PFASs, they do not provide a complete picture of the thousands of PFASs that are utilized in commercial products and potentially released into the environment. These unmeasured PFASs include many PFAS precursors, which may be converted into related PFAS chemicals through oxidation. The total oxidizable precursor (TOP) assay offers a means of bridging this gap by oxidizing unknown PFAS precursors and intermediates and converting them into stable PFASs with established analytical standards. The application of the TOP assay to samples from PFAS-contaminated sites has generated several new insights, but it has also presented various technical challenges for laboratories. Despite the increased number of literature studies that include the TOP assay, there is a critical and growing gap in the application of this method beyond researchers in academia. This article outlines the benefits and challenges of using the TOP assay with aqueous samples for site assessments and suggests ways to address some of its limitations.","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"10 4","pages":"292–301"},"PeriodicalIF":8.8000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Total Oxidizable Precursor (TOP) Assay─Best Practices, Capabilities and Limitations for PFAS Site Investigation and Remediation\",\"authors\":\"Mohamed Ateia*, Dora Chiang, Michaela Cashman and Carolyn Acheson, \",\"doi\":\"10.1021/acs.estlett.3c00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The comprehensive characterization of per- and polyfluoroalkyl substances (PFASs) is necessary for the effective assessment and management of risk at contaminated sites. While current analytical methods are capable of quantitatively measuring a number of specific PFASs, they do not provide a complete picture of the thousands of PFASs that are utilized in commercial products and potentially released into the environment. These unmeasured PFASs include many PFAS precursors, which may be converted into related PFAS chemicals through oxidation. The total oxidizable precursor (TOP) assay offers a means of bridging this gap by oxidizing unknown PFAS precursors and intermediates and converting them into stable PFASs with established analytical standards. The application of the TOP assay to samples from PFAS-contaminated sites has generated several new insights, but it has also presented various technical challenges for laboratories. Despite the increased number of literature studies that include the TOP assay, there is a critical and growing gap in the application of this method beyond researchers in academia. This article outlines the benefits and challenges of using the TOP assay with aqueous samples for site assessments and suggests ways to address some of its limitations.\",\"PeriodicalId\":37,\"journal\":{\"name\":\"Environmental Science & Technology Letters Environ.\",\"volume\":\"10 4\",\"pages\":\"292–301\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science & Technology Letters Environ.\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.estlett.3c00061\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.3c00061","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Total Oxidizable Precursor (TOP) Assay─Best Practices, Capabilities and Limitations for PFAS Site Investigation and Remediation
The comprehensive characterization of per- and polyfluoroalkyl substances (PFASs) is necessary for the effective assessment and management of risk at contaminated sites. While current analytical methods are capable of quantitatively measuring a number of specific PFASs, they do not provide a complete picture of the thousands of PFASs that are utilized in commercial products and potentially released into the environment. These unmeasured PFASs include many PFAS precursors, which may be converted into related PFAS chemicals through oxidation. The total oxidizable precursor (TOP) assay offers a means of bridging this gap by oxidizing unknown PFAS precursors and intermediates and converting them into stable PFASs with established analytical standards. The application of the TOP assay to samples from PFAS-contaminated sites has generated several new insights, but it has also presented various technical challenges for laboratories. Despite the increased number of literature studies that include the TOP assay, there is a critical and growing gap in the application of this method beyond researchers in academia. This article outlines the benefits and challenges of using the TOP assay with aqueous samples for site assessments and suggests ways to address some of its limitations.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.