经典正交洛朗多项式的表征

E. Hendriksen
{"title":"经典正交洛朗多项式的表征","authors":"E. Hendriksen","doi":"10.1016/S1385-7258(88)80025-8","DOIUrl":null,"url":null,"abstract":"<div><p>In [3] certain Laurent polynomials of <em><sub>2</sub>F<sub>1</sub></em> genus were called “Jacobi Laurent polynomials”. These Laurent polynomials belong to systems which are orthogonal with respect to a moment sequence <em>((a)<sub>n</sub>/(c)<sub>n</sub>)<sub>nεℤ</sub></em> where <em>a, c</em> are certain real numbers. Together with their confluent forms, belonging to systems which are orthogonal with respect to <em>1/(c)<sub>n</sub>)<sub>nεℤ</sub></em> respectively <em>((a)<sub>n</sub>)<sub>nεℤ</sub></em>, these Laurent polynomials will be called “classical”. The main purpose of this paper is to determine all the simple (see section 1) orthogonal systems of Laurent polynomials of which the members satisfy certain second order differential equations with polynomial coefficients, analogously to the well known characterization of S. Bochner [1] for ordinary polynomials.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 2","pages":"Pages 165-180"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80025-8","citationCount":"4","resultStr":"{\"title\":\"A characterization of classical orthogonal Laurent polynomials\",\"authors\":\"E. Hendriksen\",\"doi\":\"10.1016/S1385-7258(88)80025-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In [3] certain Laurent polynomials of <em><sub>2</sub>F<sub>1</sub></em> genus were called “Jacobi Laurent polynomials”. These Laurent polynomials belong to systems which are orthogonal with respect to a moment sequence <em>((a)<sub>n</sub>/(c)<sub>n</sub>)<sub>nεℤ</sub></em> where <em>a, c</em> are certain real numbers. Together with their confluent forms, belonging to systems which are orthogonal with respect to <em>1/(c)<sub>n</sub>)<sub>nεℤ</sub></em> respectively <em>((a)<sub>n</sub>)<sub>nεℤ</sub></em>, these Laurent polynomials will be called “classical”. The main purpose of this paper is to determine all the simple (see section 1) orthogonal systems of Laurent polynomials of which the members satisfy certain second order differential equations with polynomial coefficients, analogously to the well known characterization of S. Bochner [1] for ordinary polynomials.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 2\",\"pages\":\"Pages 165-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80025-8\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725888800258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在[3]中,某些2F1属的洛朗多项式被称为“雅可比洛朗多项式”。这些洛朗多项式属于与矩序列((a)n/(c)n)nε 0正交的系统,其中a, c是某些实数。这些洛朗多项式与它们的汇合形式一起,分别属于与1/(c)n)nε 0正交的系统((a)n)nε 0,它们将被称为“经典”多项式。本文的主要目的是确定所有简单的(见第1节)Laurent多项式正交系统,其成员满足某些多项式系数二阶微分方程,类似于S. Bochner[1]对普通多项式的著名表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of classical orthogonal Laurent polynomials

In [3] certain Laurent polynomials of 2F1 genus were called “Jacobi Laurent polynomials”. These Laurent polynomials belong to systems which are orthogonal with respect to a moment sequence ((a)n/(c)n)nεℤ where a, c are certain real numbers. Together with their confluent forms, belonging to systems which are orthogonal with respect to 1/(c)n)nεℤ respectively ((a)n)nεℤ, these Laurent polynomials will be called “classical”. The main purpose of this paper is to determine all the simple (see section 1) orthogonal systems of Laurent polynomials of which the members satisfy certain second order differential equations with polynomial coefficients, analogously to the well known characterization of S. Bochner [1] for ordinary polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信