{"title":"Chitooligosaccharide-catechin conjugate loaded liposome using different stabilising agents: characteristics, stability, and bioactivities.","authors":"Ajay Mittal, Avtar Singh, Hui Hong, Soottawat Benjakul","doi":"10.1080/02652048.2023.2209658","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To determine the optimum condition for preparing chitooligosaccharide-catechin conjugate (COS-CAT) liposomes using different stabilising agents.</p><p><strong>Methods: </strong>COS-CAT liposomes (0.1-1%, w/v) were prepared using soy phosphatidylcholine (SPC) (50-200 mM) and glycerol or cholesterol (25-100 mg). Encapsulation efficiency (EE), loading capacity (LC), physicochemical characteristics, FTIR spectra, thermal stability, and structure of COS-CAT liposomes were assessed.</p><p><strong>Results: </strong>COS-CAT loaded liposome stabilised by cholesterol (COS-CAT-CHO) showed higher stability as shown by the highest EE (76.81%) and LC (4.57%) and the lowest zeta potential (ZP) (-76.51 mV), polydispersity index (PDI) (0.2674) and releasing efficiency (RE) (53.54%) (<i>p</i> < 0.05). COS-CAT-CHO showed the highest retention and relative remaining bioactivities of COS-CAT under various conditions (<i>p</i> < 0.05). FTIR spectra revealed the interaction between the choline group of SPC and -OH groups of COS-CAT. Phase transition temperature of COS-CAT-CHO was shifted to 184 °C, which was higher than others (<i>p</i> < 0.05).</p><p><strong>Conclusion: </strong>SPC and cholesterol-based liposome could be used as a promising vesicle for maintaining bioactivities of COS-CAT.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 6","pages":"385-401"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2209658","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To determine the optimum condition for preparing chitooligosaccharide-catechin conjugate (COS-CAT) liposomes using different stabilising agents.
Methods: COS-CAT liposomes (0.1-1%, w/v) were prepared using soy phosphatidylcholine (SPC) (50-200 mM) and glycerol or cholesterol (25-100 mg). Encapsulation efficiency (EE), loading capacity (LC), physicochemical characteristics, FTIR spectra, thermal stability, and structure of COS-CAT liposomes were assessed.
Results: COS-CAT loaded liposome stabilised by cholesterol (COS-CAT-CHO) showed higher stability as shown by the highest EE (76.81%) and LC (4.57%) and the lowest zeta potential (ZP) (-76.51 mV), polydispersity index (PDI) (0.2674) and releasing efficiency (RE) (53.54%) (p < 0.05). COS-CAT-CHO showed the highest retention and relative remaining bioactivities of COS-CAT under various conditions (p < 0.05). FTIR spectra revealed the interaction between the choline group of SPC and -OH groups of COS-CAT. Phase transition temperature of COS-CAT-CHO was shifted to 184 °C, which was higher than others (p < 0.05).
Conclusion: SPC and cholesterol-based liposome could be used as a promising vesicle for maintaining bioactivities of COS-CAT.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.