Virus-assisted directed evolution of biomolecules

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Delilah Jewel , Quan Pham , Abhishek Chatterjee
{"title":"Virus-assisted directed evolution of biomolecules","authors":"Delilah Jewel ,&nbsp;Quan Pham ,&nbsp;Abhishek Chatterjee","doi":"10.1016/j.cbpa.2023.102375","DOIUrl":null,"url":null,"abstract":"<div><p>Directed evolution is a powerful technique that uses principles of natural evolution to enable the development of biomolecules with novel functions. However, the slow pace of natural evolution does not support the demand for rapidly generating new biomolecular functions in the laboratory. Viruses offer a unique path to design fast laboratory evolution experiments, owing to their innate ability to evolve much more rapidly than most living organisms, facilitated by a smaller genome size that tolerate a high frequency of mutations, as well as a fast rate of replication. These attributes offer a great opportunity to evolve various biomolecules by linking their activity to the replication of a suitable virus. This review highlights the recent advances in the application of virus-assisted directed evolution of designer biomolecules in both prokaryotic and eukaryotic cells.</p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593123001138","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Directed evolution is a powerful technique that uses principles of natural evolution to enable the development of biomolecules with novel functions. However, the slow pace of natural evolution does not support the demand for rapidly generating new biomolecular functions in the laboratory. Viruses offer a unique path to design fast laboratory evolution experiments, owing to their innate ability to evolve much more rapidly than most living organisms, facilitated by a smaller genome size that tolerate a high frequency of mutations, as well as a fast rate of replication. These attributes offer a great opportunity to evolve various biomolecules by linking their activity to the replication of a suitable virus. This review highlights the recent advances in the application of virus-assisted directed evolution of designer biomolecules in both prokaryotic and eukaryotic cells.

病毒辅助生物分子的定向进化。
定向进化是一种强大的技术,它利用自然进化的原理来开发具有新功能的生物分子。然而,自然进化的缓慢步伐并不支持在实验室中快速产生新的生物分子功能的需求。病毒为设计快速实验室进化实验提供了一条独特的途径,因为它们天生就有能力比大多数活生物体更快地进化,这得益于较小的基因组大小,可以容忍高频率的突变,以及快速的复制率。这些特性提供了一个很好的机会,通过将各种生物分子的活性与合适病毒的复制联系起来,来进化各种生物分子。本文综述了病毒辅助设计生物分子定向进化在原核细胞和真核细胞中的应用进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信