{"title":"Biosensors; noninvasive method in detection of C-reactive protein (CRP)","authors":"Hamidreza Hassanzadeh Khanmiri, Fatemeh Yazdanfar, Ahmad Mobed, Fatemeh Rezamohammadi, Mehrnoush Rahmani, Tannaz Haghgouei","doi":"10.1007/s10544-023-00666-y","DOIUrl":null,"url":null,"abstract":"<div><p>Early diagnosis of C reactive protein (CRP) is critical to applying effective therapies for related diseases. Diagnostic technology in today's healthcare systems is mostly deployed in central laboratories, involves expensive and time-consuming processes, and is operated by specialized personnel. For example, the enzyme-linked immunosorbent assay (ELISA), considered the gold standard diagnostic method, is labor-intensive and requires complex procedures such as multiple washing and labeling steps. Due to these limitations of current diagnostic techniques, it is difficult for people to regularly monitor their health and ultimately the disease is more likely to be diagnosed at a later stage. The problem is exacerbated for economically disadvantaged people living in underdeveloped countries. To address these challenges in the traditional diagnostic field, point-of-care (POC) biosensors have emerged as a promising alternative. This allows patients to have their health checked regularly at or near their bedside without resorting to laboratory tests. Nanotechnology-based methods such as biosensors have been extensively researched and developed. Among biosensors, there are also label-free biosensors with high sensitivity that do not require complicated procedures and reduce test time. However, some drawbacks such as high cost, bulky size and need for trained personnel to operate have not been improved. In this review article, we provide an overview of routine methods in CRP diagnosis and then introduce biosensors as a modern, advanced alternative to older methods. Readers of this article can learn about biosensing and its benefits while being aware of the limitations of routine methods.</p><h3>Graphical abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00666-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Early diagnosis of C reactive protein (CRP) is critical to applying effective therapies for related diseases. Diagnostic technology in today's healthcare systems is mostly deployed in central laboratories, involves expensive and time-consuming processes, and is operated by specialized personnel. For example, the enzyme-linked immunosorbent assay (ELISA), considered the gold standard diagnostic method, is labor-intensive and requires complex procedures such as multiple washing and labeling steps. Due to these limitations of current diagnostic techniques, it is difficult for people to regularly monitor their health and ultimately the disease is more likely to be diagnosed at a later stage. The problem is exacerbated for economically disadvantaged people living in underdeveloped countries. To address these challenges in the traditional diagnostic field, point-of-care (POC) biosensors have emerged as a promising alternative. This allows patients to have their health checked regularly at or near their bedside without resorting to laboratory tests. Nanotechnology-based methods such as biosensors have been extensively researched and developed. Among biosensors, there are also label-free biosensors with high sensitivity that do not require complicated procedures and reduce test time. However, some drawbacks such as high cost, bulky size and need for trained personnel to operate have not been improved. In this review article, we provide an overview of routine methods in CRP diagnosis and then introduce biosensors as a modern, advanced alternative to older methods. Readers of this article can learn about biosensing and its benefits while being aware of the limitations of routine methods.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.