The compensatory increase of Gli-similar 3 inhibited neuronal apoptosis through regulating Mps one binder kinase activator 1b (MOB1b): a possible strategy for the functional recovery after spinal cord injury.

IF 2.2 4区 农林科学 Q1 VETERINARY SCIENCES
Experimental Animals Pub Date : 2024-02-14 Epub Date: 2023-08-12 DOI:10.1538/expanim.23-0041
Hong-Bo Yang, Ying Li, Xiu-Hai Li, Qing-Ming Yan, Xian-Zhang Han, Jian Cao, Hong-Peng Sang, Jin-Long Li
{"title":"The compensatory increase of Gli-similar 3 inhibited neuronal apoptosis through regulating Mps one binder kinase activator 1b (MOB1b): a possible strategy for the functional recovery after spinal cord injury.","authors":"Hong-Bo Yang, Ying Li, Xiu-Hai Li, Qing-Ming Yan, Xian-Zhang Han, Jian Cao, Hong-Peng Sang, Jin-Long Li","doi":"10.1538/expanim.23-0041","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a devastating disease characterized by neuronal apoptosis. Gli-similar 3 (GLIS3), a transcriptional factor, was involved in cell apoptosis and associated with the transcription of downstream target genes related to neuronal function. However, the function of GLIS3 in SCI remains unknown. Therefore, we used the mouse model of SCI to explore the role of GLIS3 in SCI. The results showed that GLIS3 expression was significantly increased in spinal cord tissues of SCI mice, and GLIS3 overexpression promoted the functional recovery, reserved histological changes, and inhibited neuronal apoptosis after SCI. Through online tools, the potential target genes of GLIS3 were analyzed and we found that Mps one binder kinase activator 1b (Mob1b) had a strong association with SCI among these genes. MOB1b is a core component of Hippo signaling pathway, which was reported to inhibit cell apoptosis. MOB1b expression was significantly increased in mice at 7 days post-SCI and GLIS3 overexpression further increased its expression. Dual-luciferase reporter assay revealed that GLIS3 bound to the promoter of Mob1b and promoted its transcription. In conclusion, our findings reveal that the compensatory increase of GLIS3 promotes functional recovery after SCI through inhibiting neuronal apoptosis by transcriptionally regulating MOB1b. Our study provides a novel target for functional recovery after SCI.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877155/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1538/expanim.23-0041","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) is a devastating disease characterized by neuronal apoptosis. Gli-similar 3 (GLIS3), a transcriptional factor, was involved in cell apoptosis and associated with the transcription of downstream target genes related to neuronal function. However, the function of GLIS3 in SCI remains unknown. Therefore, we used the mouse model of SCI to explore the role of GLIS3 in SCI. The results showed that GLIS3 expression was significantly increased in spinal cord tissues of SCI mice, and GLIS3 overexpression promoted the functional recovery, reserved histological changes, and inhibited neuronal apoptosis after SCI. Through online tools, the potential target genes of GLIS3 were analyzed and we found that Mps one binder kinase activator 1b (Mob1b) had a strong association with SCI among these genes. MOB1b is a core component of Hippo signaling pathway, which was reported to inhibit cell apoptosis. MOB1b expression was significantly increased in mice at 7 days post-SCI and GLIS3 overexpression further increased its expression. Dual-luciferase reporter assay revealed that GLIS3 bound to the promoter of Mob1b and promoted its transcription. In conclusion, our findings reveal that the compensatory increase of GLIS3 promotes functional recovery after SCI through inhibiting neuronal apoptosis by transcriptionally regulating MOB1b. Our study provides a novel target for functional recovery after SCI.

Gli-similar 3的代偿性增加通过调节Mps one bind kinase activator 1b (MOB1b)抑制神经细胞凋亡:脊髓损伤后功能恢复的一种可能策略。
脊髓损伤(SCI)是一种以神经元凋亡为特征的破坏性疾病。Gli-similar 3(GLIS3)是一种转录因子,参与细胞凋亡,并与神经元功能相关的下游靶基因的转录有关。然而,GLIS3 在 SCI 中的功能仍然未知。因此,我们利用小鼠 SCI 模型来探讨 GLIS3 在 SCI 中的作用。结果显示,GLIS3在SCI小鼠脊髓组织中的表达明显增加,GLIS3的过表达促进了SCI后小鼠的功能恢复,保留了组织学变化,抑制了神经元的凋亡。通过在线工具,我们分析了GLIS3的潜在靶基因,发现在这些基因中,Mps one bind kinase activator 1b (Mob1b)与SCI有很强的相关性。MOB1b是Hippo信号通路的核心成分,据报道可抑制细胞凋亡。小鼠在SCI后7天时,MOB1b的表达明显增加,GLIS3的过表达进一步增加了其表达。双荧光素酶报告实验显示,GLIS3 与 Mob1b 的启动子结合并促进其转录。总之,我们的研究结果表明,GLIS3的代偿性增加通过转录调控MOB1b来抑制神经元凋亡,从而促进SCI后的功能恢复。我们的研究为 SCI 后的功能恢复提供了一个新的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Animals
Experimental Animals 生物-动物学
CiteScore
2.80
自引率
4.20%
发文量
2
审稿时长
3 months
期刊介绍: The aim of this international journal is to accelerate progress in laboratory animal experimentation and disseminate relevant information in related areas through publication of peer reviewed Original papers and Review articles. The journal covers basic to applied biomedical research centering around use of experimental animals and also covers topics related to experimental animals such as technology, management, and animal welfare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信