Association of lipid metabolism-related metabolites with overweight/obesity based on the FTO rs1421085†

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sabiha Farooq, Sobia Rana, Amna Jabbar Siddiqui, Ayesha Iqbal, Adil Anwar Bhatti and Syed Ghulam Musharraf
{"title":"Association of lipid metabolism-related metabolites with overweight/obesity based on the FTO rs1421085†","authors":"Sabiha Farooq, Sobia Rana, Amna Jabbar Siddiqui, Ayesha Iqbal, Adil Anwar Bhatti and Syed Ghulam Musharraf","doi":"10.1039/D3MO00112A","DOIUrl":null,"url":null,"abstract":"<p >Globally, obesity is a severe health issue. A more precise and practical approach is required to enhance clinical care and drug development. The FTO (fat mass and obesity-associated) gene variant rs1421085 is strongly associated with an increased susceptibility to obesity in numerous populations; however, the precise mechanism behind this association concerning metabolomics is still not understood. This study aims to examine the association between metabolites and obesity-related anthropometric traits based on the variant FTO rs1421085. This study was based on a case-control design involving a total of 542 participants including overweight/obese cases and healthy controls. The blood samples were collected from all the participants. The isolated serum samples were subjected to untargeted metabolomics using GC-MS. The isolated DNA samples were genotyped for the FTO rs1421085 variant. Initially, a total of 42 metabolites were identified on GC-MS, which were subjected to further association analyses. The study observed a significant association of two metabolites, glycerol and 2,3-dihydroxypropyl stearate with FTO gene variant rs1421085 and obesity-related anthropometric traits including % BF, WHtR, WC, and HC. The CT genotype of FTO rs1421085 may greatly increase the risk of overweight/obesity by changing the lipid metabolism-related metabolites. Therefore, this study highlights the significance of biochemical networks in the progression of obesity in carriers of the FTO rs1421085 risk genotype.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d3mo00112a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, obesity is a severe health issue. A more precise and practical approach is required to enhance clinical care and drug development. The FTO (fat mass and obesity-associated) gene variant rs1421085 is strongly associated with an increased susceptibility to obesity in numerous populations; however, the precise mechanism behind this association concerning metabolomics is still not understood. This study aims to examine the association between metabolites and obesity-related anthropometric traits based on the variant FTO rs1421085. This study was based on a case-control design involving a total of 542 participants including overweight/obese cases and healthy controls. The blood samples were collected from all the participants. The isolated serum samples were subjected to untargeted metabolomics using GC-MS. The isolated DNA samples were genotyped for the FTO rs1421085 variant. Initially, a total of 42 metabolites were identified on GC-MS, which were subjected to further association analyses. The study observed a significant association of two metabolites, glycerol and 2,3-dihydroxypropyl stearate with FTO gene variant rs1421085 and obesity-related anthropometric traits including % BF, WHtR, WC, and HC. The CT genotype of FTO rs1421085 may greatly increase the risk of overweight/obesity by changing the lipid metabolism-related metabolites. Therefore, this study highlights the significance of biochemical networks in the progression of obesity in carriers of the FTO rs1421085 risk genotype.

Abstract Image

基于FTO rs1421085的脂质代谢相关代谢产物与超重/肥胖的相关性。
在全球范围内,肥胖是一个严重的健康问题。需要一种更加精确和实用的方法来加强临床护理和药物开发。FTO(脂肪量和肥胖相关)基因变体rs1421085与许多人群中肥胖易感性的增加密切相关;然而,关于代谢组学,这种关联背后的确切机制仍不清楚。本研究旨在基于变异FTO rs1421085来检验代谢产物与肥胖相关的人体测量特征之间的关系。本研究基于病例对照设计,共有542名参与者参与,包括超重/肥胖病例和健康对照。从所有参与者身上采集血样。使用GC-MS对分离的血清样品进行非靶向代谢组学研究。对分离的DNA样本进行FTO rs1421085变体的基因分型。最初,在GC-MS上共鉴定了42种代谢物,并对其进行了进一步的关联分析。该研究观察到两种代谢产物甘油和2,3-二羟丙基硬脂酸酯与FTO基因变体rs1421085和肥胖相关的人体测量特征(包括%BF、WHtR、WC和HC)显著相关。FTO rs1421085的CT基因型可能通过改变脂质代谢相关代谢产物而大大增加超重/肥胖的风险。因此,本研究强调了生化网络在FTO rs1421085风险基因型携带者肥胖进展中的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信