{"title":"Thrombosis in the pathogenesis of abdominal aortic aneurysm","authors":"Jack Bontekoe MD , Jon Matsumura MD , Bo Liu PhD","doi":"10.1016/j.jvssci.2023.100106","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Abdominal aortic aneurysms (AAAs) are a relatively common vascular pathology of the elderly with high morbidity potential. Irreversible degeneration of the aortic wall leads to lethal rupture if left untreated. Nearly all AAAs contain intraluminal thrombus (ILT) to a varying degree, yet the mechanisms explaining how thrombosis is disturbed in AAA are relatively unknown. This review examined the thrombotic complications associated with AAA, the impact of thrombosis on AAA surgical outcomes and AAA pathogenesis, and the use of antithrombotic therapy in the management of this disease.</p></div><div><h3>Methods</h3><p>A literature search of the PubMed database was conducted using relevant keywords related to thrombosis and AAAs.</p></div><div><h3>Results</h3><p>Thrombotic complications are relatively infrequent in AAA yet carry significant morbidity risks. The ILT can impact endovascular aneurysm repair by limiting anatomic suitability and influence the risk of endoleaks. Many of the pathologic mechanisms involved in AAA development, including hemodynamics, inflammation, oxidative stress, and aortic wall remodeling, contain pathways that interact with thrombosis. Conversely, the ILT can also be a source of biochemical stress and exacerbate these aneurysmal processes. In animal AAA models, antithrombotic therapies have shown favorable results in preventing and stabilizing AAA. Antiplatelet agents may be beneficial for reducing risks of major adverse cardiovascular events in AAA patients; however, neither antiplatelet nor anticoagulation is currently used solely for the management of AAA.</p></div><div><h3>Conclusions</h3><p>Thrombosis and ILT may have detrimental effects on AAA growth, rupture risk, and patient outcomes, yet there is limited understanding of the pathologic thrombotic mechanisms in aneurysmal disease at the molecular level. Preventing ILT using platelet and coagulation inhibitors may be a reasonable theoretical target for aneurysm progression and stability; however, the practical benefits of current antithrombotic therapies in AAA are unclear. Further research is needed to demonstrate the extent to which thrombosis impacts AAA pathogenesis and to develop novel pharmacologic strategies for the medical management of this disease.</p></div>","PeriodicalId":74035,"journal":{"name":"JVS-vascular science","volume":"4 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/0b/main.PMC10410173.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JVS-vascular science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266635032300010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Abdominal aortic aneurysms (AAAs) are a relatively common vascular pathology of the elderly with high morbidity potential. Irreversible degeneration of the aortic wall leads to lethal rupture if left untreated. Nearly all AAAs contain intraluminal thrombus (ILT) to a varying degree, yet the mechanisms explaining how thrombosis is disturbed in AAA are relatively unknown. This review examined the thrombotic complications associated with AAA, the impact of thrombosis on AAA surgical outcomes and AAA pathogenesis, and the use of antithrombotic therapy in the management of this disease.
Methods
A literature search of the PubMed database was conducted using relevant keywords related to thrombosis and AAAs.
Results
Thrombotic complications are relatively infrequent in AAA yet carry significant morbidity risks. The ILT can impact endovascular aneurysm repair by limiting anatomic suitability and influence the risk of endoleaks. Many of the pathologic mechanisms involved in AAA development, including hemodynamics, inflammation, oxidative stress, and aortic wall remodeling, contain pathways that interact with thrombosis. Conversely, the ILT can also be a source of biochemical stress and exacerbate these aneurysmal processes. In animal AAA models, antithrombotic therapies have shown favorable results in preventing and stabilizing AAA. Antiplatelet agents may be beneficial for reducing risks of major adverse cardiovascular events in AAA patients; however, neither antiplatelet nor anticoagulation is currently used solely for the management of AAA.
Conclusions
Thrombosis and ILT may have detrimental effects on AAA growth, rupture risk, and patient outcomes, yet there is limited understanding of the pathologic thrombotic mechanisms in aneurysmal disease at the molecular level. Preventing ILT using platelet and coagulation inhibitors may be a reasonable theoretical target for aneurysm progression and stability; however, the practical benefits of current antithrombotic therapies in AAA are unclear. Further research is needed to demonstrate the extent to which thrombosis impacts AAA pathogenesis and to develop novel pharmacologic strategies for the medical management of this disease.