Alejandro Jurado-Campos, Pedro Javier Soria-Meneses, María Arenas-Moreira, Carlos Alonso-Moreno, Virginia Rodríguez-Robledo, Ana Josefa Soler, José Julián Garde, María Del Rocío Fernández-Santos
{"title":"Minimizing sperm oxidative stress using nanotechnology for breeding programs in rams.","authors":"Alejandro Jurado-Campos, Pedro Javier Soria-Meneses, María Arenas-Moreira, Carlos Alonso-Moreno, Virginia Rodríguez-Robledo, Ana Josefa Soler, José Julián Garde, María Del Rocío Fernández-Santos","doi":"10.1186/s40104-023-00907-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial insemination (AI) is a routine breeding technology in animal reproduction. Nevertheless, the temperature-sensitive nature and short fertile lifespan of ram sperm samples hamper its use in AI. In this sense, nanotechnology is an interesting tool to improve sperm protection due to the development of nanomaterials for AI, which could be used as delivery vehicles. In this work, we explored the feasibility of vitamin E nanoemulsion (NE) for improving sperm quality during transport.</p><p><strong>Results: </strong>With the aim of evaluating this proposal, ejaculates of 7 mature rams of Manchega breed were collected by artificial vagina and extended to 60 × 10<sup>6</sup> spz/mL in Andromed®. Samples containing control and NE (12 mmol/L) with and without exogenous oxidative stress (100 µmol/L Fe<sup>2+</sup>/ascorbate) were stored at 22 and 15 ºC and motility (CASA), viability (YO-PRO/PI), acrosomal integrity (PNA-FITC/PI), mitochondrial membrane potential (Mitotracker Deep Red 633), lipoperoxidation (C<sub>11</sub> BODIPY 581/591), intracellular reactive oxygen species (ROS) production and DNA status (SCSA®) monitored during 96 h. Our results show that NE could be used to maintain ram spermatozoa during transport at 15 and 22 ºC for up to 96 h, with no appreciable loss of kinematic and physiological characteristics of freshly collected samples.</p><p><strong>Conclusions: </strong>The storage of ram spermatozoa in liquid form for 2-5 d with vitamin E nanoemulsions may lead more flexibility to breeders in AI programs. In view of the potential and high versatility of these nanodevices, further studies are being carried out to assess the proposed sperm preservation medium on fertility after artificial insemination.</p>","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"14 1","pages":"106"},"PeriodicalIF":7.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413538/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-023-00907-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Artificial insemination (AI) is a routine breeding technology in animal reproduction. Nevertheless, the temperature-sensitive nature and short fertile lifespan of ram sperm samples hamper its use in AI. In this sense, nanotechnology is an interesting tool to improve sperm protection due to the development of nanomaterials for AI, which could be used as delivery vehicles. In this work, we explored the feasibility of vitamin E nanoemulsion (NE) for improving sperm quality during transport.
Results: With the aim of evaluating this proposal, ejaculates of 7 mature rams of Manchega breed were collected by artificial vagina and extended to 60 × 106 spz/mL in Andromed®. Samples containing control and NE (12 mmol/L) with and without exogenous oxidative stress (100 µmol/L Fe2+/ascorbate) were stored at 22 and 15 ºC and motility (CASA), viability (YO-PRO/PI), acrosomal integrity (PNA-FITC/PI), mitochondrial membrane potential (Mitotracker Deep Red 633), lipoperoxidation (C11 BODIPY 581/591), intracellular reactive oxygen species (ROS) production and DNA status (SCSA®) monitored during 96 h. Our results show that NE could be used to maintain ram spermatozoa during transport at 15 and 22 ºC for up to 96 h, with no appreciable loss of kinematic and physiological characteristics of freshly collected samples.
Conclusions: The storage of ram spermatozoa in liquid form for 2-5 d with vitamin E nanoemulsions may lead more flexibility to breeders in AI programs. In view of the potential and high versatility of these nanodevices, further studies are being carried out to assess the proposed sperm preservation medium on fertility after artificial insemination.
期刊介绍:
Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.