{"title":"Modulation of inflammatory and oxidative stress biomarkers due to dexamethasone exposure in chicken splenocytes","authors":"Sonu Ambwani , Rigzin Dolma , Raunak Sharma , Amandip Kaur , Himani Singh , Anamitra Ruj , Tanuj Kumar Ambwani","doi":"10.1016/j.vetimm.2023.110632","DOIUrl":null,"url":null,"abstract":"<div><p>Dexamethasone (DEXA) is a potent corticosteroid, commonly used for treating inflammatory, hypersensitive and allergic conditions. It is administered to birds with tumours. Many studies were conducted on its immunosuppressive effects; however none of the similar study is available employing chicken splenocytes culture system. The present study was conducted to assess DEXA induced alterations in inflammatory and oxidative stress biomarkers in chicken splenocytes due to its <em>in vitro</em> exposure. The maximum non-cytotoxic dose (MNCD) was evaluated and was further used for conducting lymphocytes proliferation assay (LPA), antioxidant assays (lipid peroxidation, GSH, superoxide dismutase and nitric oxide assays) and assessment of mRNA levels of various genes (IL-1β, IL-6, IL-10, LITAF, iNOS, NF-κB1, Nrf-2, Caspase-3 and -9) through qPCR. The MNCD was determined to be 30 ng/ml in chicken splenocytes culture system. DEXA caused reduction in B and T lymphocytes proliferation indicating its immunosuppressive effects, however improved the antioxidant status of the exposed splenocytes. The expression levels of IL-1β, IL-6, iNOS, LITAF and NF-κB1 were significantly reduced while IL-10 was enhanced, which signify potent anti-inflammatory potential of DEXA. NF-κB is a major transcription factor that regulates genes responsible for both, innate and adaptive immune responses and elicits inflammation. The nuclear factor erythroid 2-related factor 2 (Nrf-2) level was found to be up-regulated. Nrf-2 plays important role in combating the oxidant stress and its increased expression could be the reason of improved antioxidant status of DEXA exposed cells. Present findings indicated that DEXA exhibited modulation in anti-inflammatory, immunomodulatory and antioxidant mediators in chicken splenocytes.</p></div>","PeriodicalId":23511,"journal":{"name":"Veterinary immunology and immunopathology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary immunology and immunopathology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165242723000867","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Dexamethasone (DEXA) is a potent corticosteroid, commonly used for treating inflammatory, hypersensitive and allergic conditions. It is administered to birds with tumours. Many studies were conducted on its immunosuppressive effects; however none of the similar study is available employing chicken splenocytes culture system. The present study was conducted to assess DEXA induced alterations in inflammatory and oxidative stress biomarkers in chicken splenocytes due to its in vitro exposure. The maximum non-cytotoxic dose (MNCD) was evaluated and was further used for conducting lymphocytes proliferation assay (LPA), antioxidant assays (lipid peroxidation, GSH, superoxide dismutase and nitric oxide assays) and assessment of mRNA levels of various genes (IL-1β, IL-6, IL-10, LITAF, iNOS, NF-κB1, Nrf-2, Caspase-3 and -9) through qPCR. The MNCD was determined to be 30 ng/ml in chicken splenocytes culture system. DEXA caused reduction in B and T lymphocytes proliferation indicating its immunosuppressive effects, however improved the antioxidant status of the exposed splenocytes. The expression levels of IL-1β, IL-6, iNOS, LITAF and NF-κB1 were significantly reduced while IL-10 was enhanced, which signify potent anti-inflammatory potential of DEXA. NF-κB is a major transcription factor that regulates genes responsible for both, innate and adaptive immune responses and elicits inflammation. The nuclear factor erythroid 2-related factor 2 (Nrf-2) level was found to be up-regulated. Nrf-2 plays important role in combating the oxidant stress and its increased expression could be the reason of improved antioxidant status of DEXA exposed cells. Present findings indicated that DEXA exhibited modulation in anti-inflammatory, immunomodulatory and antioxidant mediators in chicken splenocytes.
期刊介绍:
The journal reports basic, comparative and clinical immunology as they pertain to the animal species designated here: livestock, poultry, and fish species that are major food animals and companion animals such as cats, dogs, horses and camels, and wildlife species that act as reservoirs for food, companion or human infectious diseases, or as models for human disease.
Rodent models of infectious diseases that are of importance in the animal species indicated above,when the disease requires a level of containment that is not readily available for larger animal experimentation (ABSL3), will be considered. Papers on rabbits, lizards, guinea pigs, badgers, armadillos, elephants, antelope, and buffalo will be reviewed if the research advances our fundamental understanding of immunology, or if they act as a reservoir of infectious disease for the primary animal species designated above, or for humans. Manuscripts employing other species will be reviewed if justified as fitting into the categories above.
The following topics are appropriate: biology of cells and mechanisms of the immune system, immunochemistry, immunodeficiencies, immunodiagnosis, immunogenetics, immunopathology, immunology of infectious disease and tumors, immunoprophylaxis including vaccine development and delivery, immunological aspects of pregnancy including passive immunity, autoimmuity, neuroimmunology, and transplanatation immunology. Manuscripts that describe new genes and development of tools such as monoclonal antibodies are also of interest when part of a larger biological study. Studies employing extracts or constituents (plant extracts, feed additives or microbiome) must be sufficiently defined to be reproduced in other laboratories and also provide evidence for possible mechanisms and not simply show an effect on the immune system.