Pankhuri Gupta, Kenji Nakamichi, Alyssa C Bonnell, Ryan Yanagihara, Nick Radulovich, Fuki M Hisama, Jennifer R Chao, Debarshi Mustafi
{"title":"Familial co-segregation and the emerging role of long-read sequencing to re-classify variants of uncertain significance in inherited retinal diseases.","authors":"Pankhuri Gupta, Kenji Nakamichi, Alyssa C Bonnell, Ryan Yanagihara, Nick Radulovich, Fuki M Hisama, Jennifer R Chao, Debarshi Mustafi","doi":"10.1038/s41525-023-00366-9","DOIUrl":null,"url":null,"abstract":"<p><p>Phasing genetic variants is essential in determining those that are potentially disease-causing. In autosomal recessive inherited retinal diseases (IRDs), reclassification of variants of uncertain significance (VUS) can provide a genetic diagnosis in indeterminate compound heterozygote cases. We report four cases in which familial co-segregation demonstrated a VUS resided in trans to a known pathogenic variant, which in concert with other supporting criteria, led to the reclassification of the VUS to likely pathogenic, thereby providing a genetic diagnosis in each case. We also demonstrate in a simplex patient without access to family members for co-segregation analysis that targeted long-read sequencing can provide haplotagged variant calling. This can elucidate if variants reside in trans and provide phase of genetic variants from the proband alone without parental testing. This emerging method can alleviate the bottleneck of haplotype analysis in cases where genetic testing of family members is unfeasible to provide a complete genetic diagnosis.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"8 1","pages":"20"},"PeriodicalIF":4.7000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412581/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-023-00366-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Phasing genetic variants is essential in determining those that are potentially disease-causing. In autosomal recessive inherited retinal diseases (IRDs), reclassification of variants of uncertain significance (VUS) can provide a genetic diagnosis in indeterminate compound heterozygote cases. We report four cases in which familial co-segregation demonstrated a VUS resided in trans to a known pathogenic variant, which in concert with other supporting criteria, led to the reclassification of the VUS to likely pathogenic, thereby providing a genetic diagnosis in each case. We also demonstrate in a simplex patient without access to family members for co-segregation analysis that targeted long-read sequencing can provide haplotagged variant calling. This can elucidate if variants reside in trans and provide phase of genetic variants from the proband alone without parental testing. This emerging method can alleviate the bottleneck of haplotype analysis in cases where genetic testing of family members is unfeasible to provide a complete genetic diagnosis.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.